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Abstract: In this paper, a time-dependent deterioration forecasting model is presented. In the model the deterioration process is described
by transition probabilities, which are conditional upon actual in-service duration. The model is formulated by the multistage Weibull
hazard model defined by using multiple Weibull hazard functions. The model can be estimated based upon inspection data that are
obtained at discrete points in time. The applicability of the model and the estimation methodology presented in this paper are investigated
against an empirical data set of highway utilities in the real world.
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Introduction

Effective management of any infrastructure utilities such as tun-
nel lighting in highway systems requires comprehensive under-
standing of the entire operational processes of the utility as well
as monitoring of its performance and conditions throughout its
operational life. Continuous inspection and monitoring of the sys-
tem are, however, often technically or financially difficult. There-
fore, a need to develop an analytical deterioration forecasting
model that can estimate the deterioration speed of either an indi-
vidual component or the entire infrastructure system has been
widely recognized.

Various studies have attempted incorporation of historical
background of infrastructure performance into a deterioration
model. For example, Aoki et al. (2007) proposed the Weibull
distribution function to estimate the deterioration of lighting re-
flectors in tunnel systems. This expressed the condition state of
tunnel lighting reflectors in binary terms. However, it is known
that the actual deterioration process of most infrastructure sys-
tems is better described by plural discrete condition states (Shahin
2005). In order to overcome this limitation, the Markovian tran-
sition probability can be used to express two or more condition
states in the deterioration process of infrastructure.

The Markov chain model is a stochastic approach that is
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widely used to forecast the deterioration speed of an infrastructure
system such as a bridge network (Madanat et al. 1995; Guido et
al. 2004; Morcous 2006; Robelin and Madanat 2007). Tsuda et al.
(2006) further improved the Markov chain model by proposing a
handy methodology to estimate the Markovian transition prob-
ability. The advantages of these models are that they predict fu-
ture deterioration according to information from two inspection
times and they do not require extensive historical data.

The present paper proposes a new deterioration forecasting
model for infrastructure management, which expresses the dete-
rioration speed in two or more condition states in conjunction
with elapsed time and follows the Weibull distribution function.
To begin with, a brief review of the background literature is pro-
vided. “Formulation of the Model” and “Estimation Method” de-
tail the mathematical formulation of the time-dependent transition
probability using the Weibull distribution function and the estima-
tion approach. “Empirical Analysis” presents an empirical study
using actual data from a tunnel lighting system in Japan. Finally,
“Conclusions” summarizes the contributions made by this paper,
and points out future research needs.

Research Background

Outline of Past Research

In the field of infrastructure management, various models on de-
terioration forecasting have been widely documented. One major
feature of the models is to simulate the deterioration process. In
addition, the models can be used for setting up maintenance and
repair strategies as well as proposing life cycle cost analysis. Es-
pecially under the requirements of infrastructure management at
the network level, these objectives are particularly imperative
(Aoki et al. 2007; Tsuda et al. 2006).

Past research has paid much attention to the physical mecha-
nism of the deterioration of structures (Mishalani and Koutsopou-
los 1995; Mishalani and Madanat 2002; Steven and Laszlo 2000).
However, past research, because it did not clearly specify the
statistical estimation method being used for analysis, remained at
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a rudimentary stage of development, with several problems from
the estimation results emerging as limitations. Moreover, a great
deal of inspection data are generally required to ensure the accu-
racy of the models.

In recent decades, studies aiming toward statistical application
have been extensively recorded (Lancaster 1990; Gourieroux
2000). For instance, Shin and Madanat (2003) proposed employ-
ing the Weibull deterioration hazard model to forecast the time
when cracks start to appear on pavement structures. In a similar
approach, Aoki et al. (2007) empirically verified the effectiveness
of applying the Weibull distribution function to forecast the dete-
rioration of tunnel lighting reflectors. However, as earlier men-
tioned, these models portrayed deterioration progress only by
using a binary condition state, which did not totally reflect the
actual plural condition states applied in infrastructure manage-
ment.

Methods of tackling emerging problems have been proposed.
A typical example is the multistage model developed by Lan-
caster (1990) for the behavior of labor transition, in which the
writer described a rational approach to estimating the transition
probability from multiple condition states. The mechanism in the
multistage model is that the condition state changes from one
state to other states only in one-step. This boundary creates prob-
lems in its application to infrastructure management since condi-
tion state transitions are often observed in more than one-step
changes. In an effort to overcome this limitation, Tsuda et al.
(2006) described the vertical transitive relation between condition
states and proposed a method to estimate Markov transition prob-
ability according to the multistage hazard model for bridge man-
agement.

The Markov hazard model proposed by Tsuda et al. (2006) has
wide applicability into many fields. However, the Markov transi-
tion probability is characterized by the fact that the deterioration
process does not depend on past deterioration history. Addition-
ally, there is no concrete guarantee that the deterioration process
genuinely satisfies the Markov properties, especially in cases
when the total operation duration of infrastructure is taken into
estimation. This limitation has generated a motivation for the de-
velopment of this paper, which considers multistate transition be-
tween condition states and historical operation time.

Deterioration Process and Condition States

In order to analyze and forecast the deterioration of infrastructure
components, it is necessary to accumulate time series data on the
condition states of the components. The historical deterioration
process of an infrastructure component is described in Fig. 1. This
figure shows the deterioration progress of a component that has
not been repaired. In reality, there exists uncertainty in the dete-
rioration progress of the component and moreover, the condition
state at each point in the time axis is restricted to the time at
which visual inspection is carried out.

In Fig. 1, 7 represents real calendar time. The deterioration of
the infrastructure starts immediately after its opening to the public
at initial time 7,. The condition state of a component is expressed
by rank [ representing a condition state variable i(i=1,...,I). For
a component in a good or new situation, its condition state is
given as i=1. The increasing of condition state i describes pro-
gressing deterioration. A value of i=/ indicates that a component
has reached its service limit (absorbing state). In Fig. 1, for each
discrete time T,(i=1,...,/—1) on the horizontal time axis, we can
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Fig. 1. Transitions among the condition states

observe the condition state increasing from i to i+ 1. Hereinafter,
7, refers to the time at which the transition from condition state i
to i+1 occurs.

Information regarding the deterioration process of infrastruc-
ture can be acquired through periodical visual inspections. In fact,
however, continuous monitoring and inspection of systems are
often technically or financially difficult. Thus, normal practice is
to carry out discrete periodical visual inspections throughout the
service life of the infrastructure. The model assumes that initial
inspection is carried out at time T4, when the condition state ob-
served by inspection is i(i=1,...,/—1). Future deterioration
progresses in an uncertain manner, with many possible deteriora-
tion paths. Nevertheless, among the infinite set of possible dete-
rioration paths, only one is finally realized.

Fig. 2 shows four possible sample deterioration paths. Path 1
shows no transition in the Condition State 1 from initial time 7, to
first inspection time 7,4. In Paths 2 and 3, the condition state has
advanced to Condition State 2 at times 72 and T, respectively.
However, Condition State 2 can be realized only at inspection
time 7,. The exact times of 77 and T, at which point the real
change between condition states happens, cannot be precisely
captured. Similarly, in the case of Path 4, the times T‘l‘ and 'rg, at
which, Condition State 2 and 3, respectively occur, cannot be
defined.

Deterioration State Probability

We denote s as an arbitrary elapsed time counted from the initial
time 7, The state variable h(s) expresses the actual condition
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Fig. 2. Transition pattern of the condition state
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Fig. 3. Modeling of deterioration process

state corresponding to time T=T7,+s. The deterioration process is
described by using conditional probability, which describes con-
dition state i(s)=i as occurring at time s dependent on the given
condition state at 7 (hereafter referred to deterioration state prob-
ability)

Prob[A(s) = i|h(0) = 1] =m,(s) (1)

If the deterioration state probability r; is defined in the range
of condition state i(i=1,...,]), then a time-dependent deteriora-
tion state probability vector can be further expressed as

’“'1(5)
O(s)=| : )
7"1(5)

The deterioration state probability in Eq. (1) represents the
probability of each condition state i being observed at time T
=T7y+s. In other words, it expresses the probability of state occur-
rence in the elapsed time s from the initial time. The summation
3! mds)=1 is justified by the definition of deterioration state
probability.

Formulation of the Model

Weibull Hazard Model

This section discusses the mathematical expressions for Eq. (1)
by applying the Weibull distribution function. Also, described in
this section is the methodology for estimating the deterioration
state probability by using information from collected individual
data. Fundamental background knowledge on hazard analysis can
be found in Lancaster (1990) and Gourieroux (2000). In the next
section, we briefly explain the assumption of the deterioration
process, to which Figs. 3 and 4 refer.

In Fig. 3, condition state i—1 changes to i at time T;_;. We
define {; as the life span of condition state i and y; as the elapsed
time being counted from y;=0 at initial time 7;_;. Similarly, du-
ration y,=T7,—T,_; is understood as elapsed time between 7,_; and
T4. By employing the Weibull distribution function, the survival

probability function Fj(y;) and the probability density function
fi(C;), which describes the deterioration process, are given in fol-
lowing equations:

F{y;) = exp(- 0,y%) 3)

FA8) = 0,057 exp(= 0,L%) (4)
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Fig. 4. Deterioration process from initial time and observation of
condition state

Deterioration State Probability from Initial Time

We assume the opening of an infrastructure facility at time T
with Condition State 1 (Fig. 2). At time 7, the observed condition
state is i. On the horizontal time axis, condition states of the
infrastructure facility can be displayed with respect to arbitrary
time from 7, to 7. The probability of the event that Condition
State 1 changes to Condition State i can be represented by state
probability m,(s) (where s=7-1).

i=1

Condition state remains as one until time 7. The deterioration
state probability ,(s) is exactly equal to the survival probability
expressed in Eq. (3)

"Tl(S):E(S) =6Xp(—915°") (5)

i=2

In the case when condition state (=2 is observed at time T, the
condition state changes from one to two at a time 7, € [7,,7]. The
probability density that the life span of Condition State 1 becomes
{,=7,—Ty can be expressed as f,({;) by using the Weibull func-
tion. {;(=0) is a random variable, which owns its value in the
following range:

0=(<s (6)

State probability m,(s) with condition state /=2 being ob-
served at time T is shown in the next equation

mols) = f (s - L), )
0

3=i<I

For a general case, as condition state at time T can take value
between 3=i</, the event of changes in condition state will
occur at respective times T, ...,T,_(To=T,="""=7,_;<7). The
following steps describe the mechanism of these changes. At first,
Condition State 1 remains in a duration from time 7, to time T,
+{, €[7g,7], as illustrated in Fig. 4. Second, at time T, condition
state changes from 1 to 2. Third, Condition State 2 remains in a
duration from time 7, until time T,=7,+{, € [71,,7], before turning
into Condition State 3 exactly at time 7,. Fourthly, after undergo-
ing similar processes, condition state advances to i at time T,_;
=7,,+{,_; € [T,5,7], and remains at condition state { until time 7.
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To simulate the occurrence of these events, we use the probability
density ¢;({;,...,¢;_;) in the entire duration s=T7—7,

i-1 i-1
gy L) =1 T £ ﬁi(s—&m) (8)
m=1 m=1

Random variable {,,(=0) takes its value in the range to satisfy
O0=0+8+ -+ <s ©)

Therefore, the state probability r,(s), which represents observed
condition state i(i=3,...,/-1) at time T=T,+s, can be expressed

as follows:
s 5L s=8=— =3
‘“'i(s)=f fi(Q)f fi(gz)"‘f
0 0 0
i-1
><f,-(zl-_1>ﬁ,-(s -2 cm>dc1 e dg
m=1

s ors=h X—Zi;il L
[ [ e
0Y0 0

,Ci-l)dCI s dl

(10)

i=1

Condition state [ is absorbing state, which refers to the worst
deterioration. At the time when 7 has been reached, if no repair
occurs, the state / will remain forever. From the definition of the
deterioration state probability, the probability of observing ab-
sorbing state / is shown in the following equation:

1-1

m(s)=1= 2 m,(s) (11)

m=1

Note that in the figure, the initial time is 7. Condition state i is
observed at time T4. For two inspection times 74 and Tz, we
represent s,=T,—T,, Sp=Tp—T4 as elapsed time. The time length
y; is measured from time 7,_; to time 74, and z; is measured from
time 7, to time 7;. The total life span (survival time) of condition
i is expressed as {;=y;+z;.

Simultaneous Occurrence Probability of Condition
State at Two or More Visual Inspection Times

We assume that there are two inspection times 7, and T, at which
the condition states i and j (i=j;i=1,...,/-1) are observed, re-
spectively. T, is the initial time of the deterioration process as
shown in Fig. 4. The transition pattern of condition states occurs
in the following steps. First, at time T;,_;, condition state i—1
changes into condition state i. However, condition state i can be
revealed only at inspection time 74. The duration of this event can
therefore be defined as T7,=7,_;+y,. Second, at time T,=74+Z;, the
condition state advances from i to i+1. Third, condition state i
+1 will rise to j—1 at time 7,_,. Finally, after 7;_;, the condition
state will reach j and remain in condition state j until inspection
time Tp.

In Fig. 4, we define durations s;=7,—7, and sg=Tp—T74. It
should be recognized from Fig. 4 that condition state i—1 changes
into condition state i at time T,_;=T,—Y;. In other words, condi-
tion state i is revealed at inspection time T,; however, it has
already existed over the duration y;. If condition state j observed
at inspection Ty is considered, the probability for this event to
happen is thus dependent on the information concerning condition

state i. Thus, by the definition of conditional probability, the fol-
lowing conditional probability density function is defined:

gij(SB’Zi’giH» e ’gj—l|yi)

filyi+z) - = S
=" H f‘m(gm)F] Sp—%i— E gm (12)
Fi(yi) m=i+1 m=i+1

In Eq. (12), y; and z;=durations measured from time T,_; to time
7, and from time T, to time T;, respectively, as shown in Fig. 4.
The life span of condition state i is defined by means of variable
{;=y;+z;. Variables z,(=0),{;,(=0),...,{;.;(=0) are random
variables with their values to satisfy the following equation:
-1
ngi—l' 2 §m<sB (13)

m=i+1

Given the elapsed time y; and condition state i observed at inspec-
tion time 7,, we define the conditional probability k;;(s|y;), to
which condition state j is observed at inspection time Tz=T,+S5p

! Sp=2; -2

B (BT sB—Zi—E{n:ngm
Kij(sB|yi) = tt

0 0 0

Xgij(sB’Zi’CiJrl’ 7§j—||yi)dzid§i+l cedl (14)

Condition state i can appear at any arbitrary time from the initial
time to inspection time 4. The duration y; therefore has a range
in the domain 0 =y,=s,. Eventually, we can define the probabil-
ity density m,(s4,y;), which describes the probabilistic relation of
condition state i occurring at time T,_;=T4—Y;

SA7Yi sa—yi~{)
Ni($4.Y:) = fl(Cl)f fally)- -

0 0

sa=yi— i3 _
f fi—l(Ci—l)dCI cedli (Fiy)

0
fSA.Vi JSA_)’FCI j samy-3? o
VirZ,
0 0 0

i—1
X T for(@u)dty -+ dliy {F i) (15)
1

’
m =

i-2
Cisi=Sa—Yi— E Lo (16)
m'=1

As a sequel, we are able to define the explicit form for transition
probability ;,(s4.55), which expresses the conditional probability
for condition state i being observed at T, and condition state j
being observed at Tz=Ty+5,4+5p

Trij(SA’SB) =Prob[A(s,) = i,h(s4 + s5) = /]

SA
=J ni(SA’yi)Kij(sB|yi)dyi (17)
0

The probability that condition state / is observed at inspection
time T4 can be seen in Eq. (11). If at inspection 75, condition state
I is revealed, we can define the following transition probability:

-1
(8 4055) = Wi(54) = 2 5(54,55) (18)

j=i
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Management Indicator for Infrastructure Management

The life expectancy of condition state i is an important indicator
for infrastructure management. Life expectancy is viewed as du-
ration, in which condition state i remains until entering condition
state i+ 1. In other words, life expectancy of condition state i is
the remaining duration counted from initial time until time T;, at
which, condition state i changes to condition state i+ 1. Probabi-
listically, life expectancy of condition state i can be expressed by

means of the survival probability function F (v;) (Lancaster 1990)

RMD(i)=J Fi(yi)dyi (19)
0

The abbreviation RMD stands for “remaining duration.” Based on
Eq. (3), we have the following equation:

RMD(i) = f exp(= 0,y;)dy; (20)
0

Management indicator RMD(i) is estimated based on the assump-
tion that at time 7,_; condition state changes from i—1 to i, as
shown in Fig. 4. This calculation seems to have the limitation that
it does not capture the historical duration measured from initial
time. Thus, it is necessary to define the life expectancy of condi-
tion state i based on the initial time. We denote RL(i), standing
for “remaining life,” as a management indicator, which indicates
the duration of condition state i counted from initial time. As can
be seen from Fig. 4, RL(i) is actually measured from time 7, to
time T;. Given the total duration s for condition state i to remain
until reaching condition state i+ 1, we can define the probability
density p,(s) for condition state i ending its service life at time
T=To+S

s s={ ,572’.7_21@,,1 i-1 i-1
pi(S)=f f f ) Hfm(gm)fi(s_ E Cm)dgl ”'dgi—l
0YJ0 0

m=1 m=1

21)

RL(i)=expected period until the ending of condition state i
counted from initial time, and thus can be further defined

RL(i):f sp;(s)ds (22)

0

It is noted that RMD and RL are fundamentally estimated based
on two different assumptions of starting time. Thus, there exists a
high possibility that the estimation results of these two manage-
ment indicators are different. In addition to management indica-
tors RMD(i) and RL(i), there is a need to estimate the life
expectancy of condition state j as well. As a matter of fact, the
event condition state j appears conditionally dependent on condi-
tion state i, which seems to be observed at inspection time 74. By
the definition of conditional probability, we can define the condi-
tional probability density v;(s|h(s,)=i), at which condition state j
will disappear given the visual observed condition state i at time
To=To+5, and the elapsed duration time s

M XN
m,(s4)

vj(s|h(sA) =i)= (23)

where

sa - (Sa7Yi (SaYih sA=y= o N
m =
M= 2 i+
0 0 0 0
i-1

X T for(Cu)dyidC, -+ dt;pdz; (24)

m'=1

e S-Zf-zﬁfmém
N= e
00 0
j-1

-1
X H fm(lm)f}(S—Zi— E Cm)dCiﬂ"'de—l

m=i+1 m=i+1

(i=jiij=1,....1-1) (25)

The denominator of Eq. (23) refers to deterioration state probabil-
ity for condition state i/, which remains until time s,. In the nu-
merator, M represents the event that condition state i remains
until increment time z;, and N represents the event that condition
state i changes to j at elapsed time {;_; and stays up to duration s.
Eventually, we define the life expectancy of condition state j (j
=i) as RLj(h(s,)=1), which conditionally depends on condition
state i with duration s,

RL;(h(s,) =1i) = f sv,(s|h(sy) = i)ds
0

(i=jsij=1,....,0-1) (26)

Estimation Method

Content of Data from Visual Inspection

Suppose visual inspection data on the same kind of K infrastruc-
ture components is available, an inspection sample k(k=1,...,K)
describes a visual inspection time carried out at 7% with the con-
cerning condition state h(5%). The symbol |-] indicates an actual
measurement. The duration between initial time 75 and the first
inspection time 7 is 5*=74—75. In addition, a dummy variable
8":{5?‘(1’: 1,...,1)} based on the deterioration progress patterns
in the duration 5* is defined as
—% o
5= 1 h(s )—.1 (27)
0 otherwise

Furthermore, in order to describe the information in sample k, we
use characteristic vector )?kz()?’f,...,)?fv) and elapsed duration 5~
)?’,‘l(n= 1,...,N) represents the value of a characteristic variable n in
the sample k such as structural characteristics, environmental con-
dition and so on. Thus, the information contained in inspection

sample k can be rearranged as &=(3%5,%). As a result, we can
further express the Weibull hazard function for sample k as

M) =0y (i=1,...,1-1) (28)

It is noted that the hazard function is not defined for condition
state I since [ is absorbing state and lim,_,., m,(s)=1. As a matter
of course, the value of hazard rate Bf(izl,... J-1:k=1,...,K)
changes according to the property of characteristic vectors of
sample k. The dependency of hazard rate on characteristic vector

% can be formulated by means of functional relationship as
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0; =B/ (29)

where B8,=(B;;,...,B;y)=row vector of unknown parameter {,,(n
=1,...,N) and the symbol ’ indicates transposition. The func-
tional relationship between hazard rate and characteristic variable
can be changed according to preferences in estimation. This issue
can be further viewed in the relationship assumption in our em-
pirical study.

Later in this section, the methodology to estimate the transi-
tion probability will be presented. At first, based on the Weibull

hazard function A\X(y,) with collected sample information & (k
=1,...,K), the likelihood function for transition probability is de-
fined. Based on the maximum likelihood estimation approach, we
can obtain the values for unknown parameters in Eq. (29) and
further for the parameterized values of the Weibull hazard func-
tion. Second, the estimation method is proposed for the transition
probability when there are two or more than two inspection data.
Finally, we explain the necessity of estimating the expected dete-
rioration state probability as a representative value when there is
a large pool of sampling data.

Estimation of Weibull Hazard Function

As earlier mentioned, data concerning inspection sample k can be

rearranged as &= (8% 5,x%). The application of the Weibull hazard
function in estimating the deterioration state probability is dis-
cussed in Egs. (5), (7), (10), and (11). Applying the characteristic
vector X* of infrastructure component, we can calculate the hazard
rate expressed in Eq. (29). Moreover, the deterioration state prob-
ability depends on the duration of operation s* after the opening
time of the infrastructure. Therefore, in order to express clearly
this characteristic, the deterioration state probability ;(3*) can be
defined as a function of measured visual inspection data (5%,
and unknown parameter vector y={a,B,(i=1,....,/-1)}. «
=(ay,...,a;;) is a row vector of unknown parameter o(i
=1,....I-1).

If the deterioration progress of the infrastructure components
in K samples are assumed to be mutually independent, the log-
likelihood function expressing the simultaneous probability den-
sity of the deterioration transition pattern for all inspection
samples is

I K I K

In[L(y)] = 1n[H I1 {wi(s*,x*:v)}af] = > 8 In[m (5, #:y)]

i=1 k=1 i=1 k=1
(30)

where 8%, 5, and X* are all determined through inspection and vy
=parameter to be estimated (Tobin 1958). Estimation of param-
eter vy, given an amount of y=(¥,,,...,¥,_1y), can be obtained by
solving the optimality conditions

M:O, (i=1,---,I-1;n=0,1,...,N) (31)
a’Yin

that result from maximizing the log-likelihood function (30). The
optimal values &;=%,, and B;=(3;;,...,¥;y) are then estimated by
applying a numerical iterative procedure such as the Newton
method for the (I—-1)X(N+1) order nonlinear simultaneous
equations. Moreover, estimator for the asymptotical covariance
matrix of the parameters [2(y)] is given by

P m{m)}]—l (32)

E(V)Z[ ayay’'

The (I-1)(N+1) X (I-1)(N+1) order inverse matrix of the right-
hand side of the above equation, composed of the element
& In{L(y)}/ &y,,9v,;1,» results in the Fisher information matrix
(Greene 2000). In the aforementioned calculation process, it
might not be necessary directly to estimate the deterioration state
probability ,(s) from the log-likelihood function of Eq. (30). The
deterioration state probability can be estimated from multiple in-
tegration of Eq. (10). Suffice it to say that the accuracy of esti-
mation for y depends on the accuracy in calculating the multiple
integration. Considering this challenge, in this research we em-
ploy double integration, suggested by Steven and Raymond
(1997), to improve the accuracy of multiple integral calculation.

Estimation Method for Transition Probability When
Having Two or More Visual Inspection Data

In general management practice, the database is composed only
of data from two inspection times. However, future monitoring
activities may be expanded so as to provide the advantage of data
for more than two inspection times. Therefore, besides the esti-
mation methodology for two inspection times as earlier discussed,
it is necessary to develop a method to take multiinspection times
into account.

For sample k, we assume the condition states 4(5%) and h(s,
+3%) are, respectively, observed at inspection times 7 and T%. 7%
is defined as initial time. Thus, two durations of operation accord-
ing to two inspection times are further defined as 5% =7, -7} and

EkB=’F§—*Ff\. Additionally, a dummy variable &k={g§(i=1,...,l
—1,j=1,...,])} is determined based on the transition pattern ob-

served from inspections

(33)

U710 Otherwise

_ {1 h() = ih(E +55) =

The information of inspection sample k can be rearranged as =¥
=(A*5* ). Since the duration 5= (5%,5%) is observable, the dete-
rioration state probability can be estimated according to Egs. (17)
and (18). Precisely, the transition probability w,-j(Ef;,Eg) can be
expressed by means of the function of ; j(Ef‘,EkB:y), in which the
data (5%,x°) are available from visual inspections, thus making
unknown parameter y the only target of estimation. The descrip-
tion of unknown parameter y={a,B;(i=1,...,/-1)} is similar to
that explained earlier in this section.

In a similar approach to Eq. (30), we define the log-likelihood
function for transition probability as follows:

-1 1 K
in[L(y)]=n| [T TTTT fm, G #y)}
=1 j=i k=1
-1 1

= E E E 55 ln[""'lj;‘(fk,ka)] (34)

i=1 j=i k=1

By applying the maximum likelihood estimation approach, we
can obtain the value for unknown parameter y. We will omit a
detailed explanation, since this is similar to a reference mentioned
earlier in this section. Nevertheless, it is worth emphasizing that
the case when i=1 is not embedded in the degree of Eq. (34) since
I is the absorbing state.
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Table 1. Deterioration Condition State Criterion

Table 2. Number of Sample Data

Inspection Condition

result state Physical description

OK 1 There is no damage

B 2 The progress of damage is observed. However,
damage level is not severe and repair is not
necessary.

A 3 There is damage. Repair is recommended.
However, urgent repair is not compulsory.

AA 4 Damage is obvious and repair is compulsorily

required

Note: If repair is applied, condition state of facility will become 1. The
transition of repair is A— OK and AA— OK.

Expected Deterioration State Probability

The research methodology for deterioration estimation can be ap-
plied to every individual infrastructure component. However, in
practice, when the deterioration pattern of a large amount of sam-
pling data are considered, it is more convenient to estimate the
expected deterioration state probability rather than to focus on
that of individual components.

With regard to the relationship between the hazard rate 6%(k
=1,...,K) of sample k and the characteristic variable x, it is un-
derstandable to express the distribution function of characteristic
variable as I'(x). Thus, statistically, the expected value of the
hazard rate E[0;] can be defined by means of the distribution
function of characteristic variable x

Elo,]= j xBidT (x) (35)
(€]

where O refers to the entire sample population. After averaging
the value of the hazard rate, we can again define the Weibull
hazard function as

N(v) = E[0,Joy ™! (36)

Eventually, after the expected hazard rate is estimated from Eq.
(36), the expected deterioration state probability [Egs. (5), (7),
(10), and (11)] and the life expectancy of condition states [Egs.
(22) and (26)] can be obtained.

Empirical Analysis

Outline

In this section, we present an empirical application using a tailor
program to further verify the applicability of the model, using
visual inspection data on the highway tunnel lighting system. Vi-
sual inspection was conducted to record the condition of steel
board and stainless steel plate (SUS), the two main materials used
in the lighting system as reflectors. However, due to the lack of
sufficient data on SUS, only results from the visual observation of
steel board are used as an application experience. Data concern-
ing the structural visual inspection of highway tunnel lighting
system were collected between April 2002 and January 2003. The
database also contains information from the opening date. The
condition states are ranked by a rating of OK, B, A, and AA,
explained in detail in Table 1.

In total, we used 12,311 sample data from the database for
empirical analysis. From among the sample data, the transition of
condition states in regard to visual inspection times are rearranged

Average
operation
Number of duration

Transition pattern samples (years)
OK—OK 2 5.24
OK—B 1,321 8.31
OK— A (no historical repair) 10,238 (6,073)  11.98 (9.72)
OK— AA (repair history is available) 750 (4,915) 15.91 (15.36)

Total 12,311

Note: Nature transition of deterioration is OK— B — A — AA. However,
at time 7, condition state is OK. The transition in this table reflects the
condition of facilities at inspection times.

in Table 2. The average duration of operation with respect to each
condition state counted from the starting time of the infrastructure
to the inspection times also shown in the table (inspection time
was not the same for every lighting facility). The deterioration
pattern is reflected by the transition of deterioration condition
states being observed at respective visual inspection times. If the
deterioration progress of a lighting facility advances to condition
state A or AA, repair can be carried out. However, in the case of
condition state A, an immediate repair is not compulsorily re-
quired according to the management guideline. While, an imme-
diate repair must be carried out for the facility in condition state
AA.

The recorded data also shows the classification of data at the
time when visual inspection is carried out. For example, in the
total amount of 10,238 samples in condition state A at visual
inspection time (group of transition pattern from OK— A), there
are 6,073 samples in the group of those without historical repair,
4,165 samples having already received repair in the past. Visual
inspection also reveals 750 samples reaching condition state AA,
which required immediate repair. Consequently, the total numbers
of samples receiving repair action became 4,165+750=4,915 in
the end, and the average operation duration of those facilities
reached about 15.36 years.

Hazard Model Estimation

As for physical characteristics, at first, four variables are reviewed
as potential candidates, including elapsed time 5%, type of lighting
facility (normal lighting and eased lighting), traffic volume and
tunnel inclination. The purpose of combining explanatory vari-
ables is to maximize the aforementioned log-likelihood function
with a significant level of 7-values. Finally, we selected elapsed
time and type of lighting as explanatory variables. In addition, we
defined the Weibull hazard function as a function of variables as
follows:

MNOD = (B + Bud) (D) (i =1,2,3) (37)

In Eq. (37), a dummy variable d* is added. Its value is defined
based on the type of lighting facility. For example, d*=0 is for the
case when sample k is a normal lighting facility; otherwise, d*
=1. Variable yf-‘ indicates the elapsed time over which sample k
stays in condition state i. It is noted that variable yf.‘ cannot be

observed directly. Thus, when we detect i as the condition state of

sample k, we define the summation of duration as Einzlykm:Ek.

Estimation results are presented in Table 3. It can be seen from
the table that there is a significant difference between types of
lighting facilities. The values of the unknown parameter and its
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Table 3. Result of Hazard Model Estimation

Multistage Weibull hazard model

Multistage Markovian hazard model

Condition state Q; Bio Bii E[6/] Q; Bio B E[6,]

1 (z value) 2.039 0.548 —-0.323 0.367 1.0 1.054 —0.370 0.847
(477.54) (6.14) (—3.49) — — (10.12) (—3.66) —

2 (¢ value) 1.623 0.0812 — 0.0812 1.0 0.265 — 0.265
(469.92) (32.90) — — — (58.99) — —

3 (¢ value) 5.709 0.000011 — 0.000011 1.0 0.0882 — 0.0882
(1,486.69) (15.10) — — — (35.43) — —

Initial log-likelihood —811,804.79 —811,804.79

Log-likelihood —17,041.67 —8,996.89

Likelihood ratio 0.991 0.989

statistical 7-value associated with the type of lighting facility re-
ceives its negative value for Condition State 1. After verification,
we recognized the fact that eased lighting, which is located at the
tunnel opening, has an early deterioration speed. Thus, the esti-
mation results corresponded exactly to the observed information.
Regarding the deterioration of Condition States 2 and 3, estima-
tion results proved that type of lighting facility does not have a
significant impact.

Table 3 further displays comparative results between the mul-
tistage Weibull hazard model and the multistate Markovian haz-
ard model. The reason behind the comparison is that the
multistate Markovian hazard model is in fact a special case of the
multistage Weibull hazard model, as when acceleration parameter
o in the Weibull hazard function equals 1. It is realized from the
table that the acceleration in value of a exactly corresponds to the
growth of condition states (a; =2.039, o, =1.623, and a;=5.709).
In addition, it is concurrently found that the increase in the
elapsed time is in correlation with the increase in value o.

Fig. 5 displays the relationship between elapsed time y; of

Condition State 1 and the survival probability F,(y,) for both
normal lighting reflectors (d“=1) and eased lighting reflectors
(d*=0). Normal lighting reflectors are referred to lighting reflec-
tors installed in the inside part of tunnels. Eased lighting reflectors
are installed in the open part of tunnels (near the gates). It can be
seen from the figure that normal lighting reflectors have higher
probability of surviving than eased lighting reflectors. The life
expectancy of Condition State 1 for eased lighting reflectors is
relatively short. For instance, after approximately y,=1.7 years
in operation, 80% of the total number of eased lighting reflectors

1':1 o)

§/

Eased lighting

0 1 2 3 4 5 6 7

Sample operation duration y, (year)

Fig. 5. Survival probability F;(y,)

in Condition State 1 will change into Condition State 2. On the
other hand, 50% of the total number of normal lighting reflectors
still remain in Condition State 1.

Fig. 6 shows the distribution pattern of condition states in
relation to the duration of operation time of a normal lighting
reflector. It is noted that after approximately 6 years in operation,
Condition State 1 will be on the verge of disappearing. Based on
this finding, it is advisable to implement visual inspection after
about 6 years. Moreover, as noted from Table 2, Condition States
3 and 4 account for a large proportion of the sampling population
after about 15 years of operation. Therefore, in terms of manage-
ment, it might be too risky for inspection time to be allocated
around the time when there is a high possibility of the onset of
Condition States 3 and 4.

Calculation of Management Indicator

Table 4 presents the comparative estimation results for manage-
ment indicators RMD(i) and RL(i), which are estimated by using
multistate Weibull hazard model and multistage Markovian haz-
ard model. It is certain that the values of RMD(i) and RL(i) for
Condition States 1 and 2, estimated by the multistage Markovian
hazard model, exert only slight differences from that of multistage
Weibull hazard model. However, a significant difference between
the values of RMD(i) and RL(i) is realized for Condition State 3
when employing the multistage Weibull hazard model [RMD(3)
=7.30 and RL(3)=12.95]. This result further proves the impact of
elapsed time on estimation results.

A comparison of the values of RL(3) between the two models
shows that the value estimated with the multistage Weibull hazard

100% pea
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60% | &

condition
state 3

50%
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30%
20%
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I // state 4 %
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Fig. 6. Deterioration state probability ;(s)
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Table 4. Management Indicator
Life expectancy RMD(i)

Initial life expectancy RL(i)

Condition (years) (years)

state Weibull Markov ‘Weibull Markov
1 1.45 1.23 1.45 1.27
2 4.20 3.77 5.65 5.00
3 7.30 11.34 12.95 16.34

Note: Acronyms for Weibull and Markov in the heading of the table are
referred to the multistage Weibull hazard model and multistage Markov-
ian hazard model.

model is shorter than that estimated by using the multistage Mar-
kovian hazard model [RL(3)=16.34]. In addition, the average
duration measured in Table 2 (15.36) is shorter than that of the
multistage Markovian hazard model. These differences are due to
the fact that the past operation duration of 4,165 samples with
repair in the history were not considered in the multistage Mar-
kovian hazard model.

Note that slopes of survival probabilities F,(y,) for Condition
State 1 along operation duration y; drawn for normal lighting and
eased lighting reflectors. In addition, note that the relation be-
tween operation duration s from initial time and deterioration
state probability 1r;(s) for normal lighting reflectors. Finally, the
estimation results for management indicator RL;(h(s,)=i) are
shown in Table 5, where values of RL;(h(s,)=i) are presented
corresponding to the elapsed time s, and condition state i. It is
noted that the life expectancies shown in the table are only for
values of s, at which the survival probability exceeds 10%. The
values presented in the table highlight the fact that when elapsed
time s, increases, the life expectancy of condition states tends to
decrease.

Conclusions

This paper has presented a new analytical methodology using the
multistage Weibull hazard model for forecasting the deterioration
process of infrastructure facilities. The deterioration process is
represented by a transition pattern among multiple condition
states. In the estimation approach, the maximum likelihood
method is employed to estimate the parameters of the model
based on observed condition states, characteristic variables and
elapsed time of disaggregate samples collected through inspec-
tions. The proposed model makes it possible to estimate the tran-
sition probability of condition states for any arbitrary time
intervals, which was lacked in the past research.

In order to verify the applicability of the model, an empirical
study was conducted on a database of tunnel lighting reflectors of

Table 5. Life Expectancy and Corresponding Condition State
RL;(h(s4)=i)

Condition i=1 i=2 i=3
state i (years) (years) (years)
Sy=2 11.85 10.54 6.40
sp=4 — 9.94 5.77
s4=6 — 9.39 4.92
s4=8 — 9.02 3.96
54=10 — — 3.15
sp=12 — — 2.60

express highways in Japan. This study has made a contribution to

the field by benchmarking the findings with estimation results

using the multistage Markovian hazard model. Estimation results
can be used as recommendations for tunnel administrators to
work out an optimal inspection plan. For example, it is recom-
mended to implement regular inspection after 6 years since the
starting date of lighting reflectors. The analytical methodology
presented can be extended to apply not only to tunnel lighting
reflectors but to various other kinds of infrastructure facilities as
well.

However, we have not discussed several points, which will be
considered as topics for extending this study in the future

e Measurement errors occurring in monitoring and inspection
activities have not been addressed in this model. In order to
tackle this problem, for example, a methodology using Baye-
sian estimation and Markov Chain Monte Carlo can be incor-
porated into the model in the future.

e The samples used in empirical study shared almost similar
structural characteristics. However, in general practice, an in-
frastructure database system is often comprised of heteroge-
neous groups. Thus, the impacts of individual groups on the
overall deterioration process should be investigated. A meth-
odology using the mixture mechanism in hazard analysis can
be proposed for future consideration.

e In future management, a tendency might develop whereby
shorter inspections will become common due to innovations in
technology. Hence, the database system of infrastructure man-
agement should be designed in such a way that it can be syn-
chronized with an analytical frame. As a sequel, the future
focus on multischemes inspection data should be considered.
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