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Executive Summary

Recent studies on infrastructure asset management pay great attention on formulating

the best fitting stochastic hazard models and on the solutions to the problems arising

from incomplete monitoring data. Hazard model plays a center role in any infrastruc-

ture management system because of its ability to predict the deterioration. Meanwhile,

monitoring data is the primary sort of information, which is necessary to be used in the

empirical application of a hazard model. The development of hazard models requires

understanding of the deterioration mechanism/process on the entire operational life cy-

cle and the dependence of deterioration on characteristic variables. In hazard analysis

with stochastic approach, deterioration mechanism can be simulated by means of tran-

sition among discrete condition states (healthy status of infrastructure system), which

are quantified by aggregate values of distress indexes recorded by regular monitoring

and visual observation.

Evidently, the deterioration process or transition among condition states depends on the

changes in values of characteristic variables over a period. For example, the cracking

of pavement progresses in close link with the increasing or decreasing of traffic volume,

thickness of overlay structure, and ambient temperature. To understand the deteri-

oration mechanism and the dependencies on characteristic variables, monitoring, and

visual inspection are indispensable in management of any infrastructure system. How-

ever, there is a fact that continuous monitoring and inspection are often technically

and financially difficult. As a sequent, monitoring data is generally incomplete. Thus,

in the formulation of hazard models and in monitoring of characteristic variables, it is

important to define a suitable deterioration mechanism along with a good selection of

characteristic variables for particular infrastructure system.

A great deal of past researches paid much attention to the physical mechanism of de-

terioration of structures. However, the past research remained in a rudiment stage

of development as not specifying a clear statistical estimation method. Thus, several

problems from the estimation results can be seen as the limitations.

In stochastic hazard models, the application of Markov chain model has become popular.

Markov chain model has its advantage that it requires only monitoring data of two visual

inspection times. Thus, it reduces the burdens of collecting continuous monitoring

data and full-scale inspection. However, the estimation of hazard rate and transition

probability matrix in Markov chain model is not an easy task. Especially when having

to tackle the problems of multi condition states, system with memory, measurement

errors, and inhomogeneous monitoring data.
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Among prominent problems, the assumption of condition states and analytical estima-

tion method in hazard analysis are often discussed. In reality, the deterioration of most

of infrastructure systems should be expressed in multi condition states. However, due

to either poor definition or lack of monitoring technique, binary condition state regime

is applied instead. This over simplification prevents managers/engineers from selecting

choices for maintenance and repair. The multi condition state regime, on the other

hand, requires advanced monitoring technologies and sophisticated calculation. Thus,

selection of binary condition state regime or multi- condition state regime crucially de-

pends on the availability of monitoring data and on the requirements of maintenance

and repair. Another popular problem in monitoring data is measurement errors. The

errors occur and exist in the database system due to either defection of monitoring de-

vices or human mistakes. These measurement errors, if used in hazard models, will bias

the estimation results.

There is another important issue in management of infrastructure, especially for under-

ground infrastructure system, where monitoring techniques exerts to require huge cost

and time. Moreover, critical damage or failure of system often generates huge loss in

social and repair costs. Thus, finding the optimal renewal time for such system is cru-

cial important. A great number of studies have proposed models with aims for optimal

renewal time. However, most of them used non-homogeneous Poisson process, which

did not take into consideration of the in-service duration of structure.

The last problem is discussed in this research is the methodology to estimate heterogene-

ity factor in mixture hazard model, which is used for inhomogeneous set of monitoring

data. The estimation methodology for mixture hazard model has not been precisely

established in the field since the difficulty is on the assumption of heterogeneity factor

to follow parametric behavior or a function. The study on mixture hazard model will

enable the study of benchmarking, which is used to find the best practice in manage-

ment and technology. In view of pavement management in developing countries, where

many different borrowed technologies are applied, finding a best technology would bring

in significant results.

The study aimed at formulating stochastic optimization methods for infrastructure asset

management under incomplete monitoring data. The objectives and scopes of the study

were organized into two main parts. The first part presents two innovative hazard

models attempting to promote the application of multi condition states regime by use of

Weibull hazard functions, and to solve the problems of measurement errors in monitoring

data by employing hidden Markov model with Bayesian and Markov Chain Monte Carlo

(MCMC) methodology. The second part aimed at development of hazard models dealing

with optimal renewal time, life cycle cost estimation, and benchmarking based on the
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core of hazard models in the first part. Empirical studies of the developed hazard

models and methodologies were conducted on incomplete monitoring data of four main

infrastructure systems: The lighting utility in tunnel system in Japan, the express

highway system in Japan, the water distribution pipelines system in Japan, and the

pavement management system in Vietnam.

In Chapter 3, a time-dependent deterioration-forecasting model was presented, whereby

the deterioration is described by the transition probabilities, which conditionally de-

pends on the actual in-service duration. We formulated the model by use of multi-stage

Weibull hazard functions. The study had solved the critiques over the hazard model

with binary condition state regime. Moreover, by employing Weibull functions for rep-

resenting the behavior of hazard rate, the study further addressed the importance of

monitoring data, which should also capture the historical performances of infrastruc-

ture as sufficient as possible. The model can be estimated based upon the incomplete

monitoring data, which are obtained at the discrete points in time. The applicability of

the model and the estimation methodology presented in this chapter was investigated

with empirical study on 12, 311 data samples of the highway tunnel lighting utilities in

Japan.

For tunnel lighting utility as a case, the range of condition states were defined in the

domain [1-4]for ease of monitoring and maintenance. The overall life expectancy of both

normal lighting and ease lighting utilities was about 13 years. Interestingly, empirical

study revealed that the results obtained by using the Multi-stage Weibull hazard had

been significantly improved if comparing with the results produced by using the con-

ventional Markov model. The conventional Markov model is the model with hazard

function to follow exponential form, which was briefly introduced in the literature of

Chapter 2. The differences of overall life expectancy estimated by two models were

about 3 years to 4 years. The longer life expectancy produced by applying conventional

Markov model can be claimed to incomplete monitoring data, data without censoring,

and the computation using only two most recent sampling populations. Based on the

distribution of condition states over the years, it is advisable for tunnel administrator

to carry out inspection after 5 years to 6 years from the opening of services.

Measurement errors in monitoring data were extensively discussed in Chapter 4. As

earlier mentioned, the problem of measurement errors in monitoring data tends to bias

the estimation results of the conventional Markov hazard model. As a matter of course,

measurement errors can be more or less eliminated by using some simple sorting tech-

niques such as: correcting or erasing samples with better condition states in the second

observation than the first observation. However, sorting techniques cannot reveal latent

errors. To uncover and solve the problems, a hidden Markov model was formulated
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and presented in this chapter. In the hidden Markov model, measurement errors are

assumed as random variables. The estimation methodology was developed with aids

of Bayesian estimation and MCMC technique in tackling the posterior probability dis-

tribution and sampling generation of condition states. An empirical application on

Japanese national road system was presented to demonstrate the applicability of the

model. The estimation results highlighted that the properties of Markov transition ma-

trix had been greatly improved in comparison with the properties obtained from using

the conventional exponential hazard model.

In the empirical study of the hidden Markov model, we used 5, 261 numbers of samples

of Japanese expressways collected during the period from 1998 to 2005. Each sample

represented 100 meters of expressway. The healthy status of sections were evaluated by

means of 5 discrete condition states, with 1 as the best condition state and 5 as the worst

condition state. The condition states were converted values based on the range of rut

index . Estimation results showed the fact that measurement errors had existed in the

monitoring data for a long time. Measurement errors caused the deterioration curve,

which was estimated by applying the exponential hazard model, to sharply decrease

in comparison with the true deterioration curve. In addition, by applying the hidden

Markov model, it was possible to have a re-produced database, which yielded the results

closely to the true values. The overall life expectancy of overlay structure of the Japanese

expressway was predicted to be about 30 years and 35 years.

In Chapter 5, we discussed the formulation of a time-dependent hazard model using

for finding optimal renewal time of underground infrastructure, where monitoring and

visual observation require special techniques and huge cost. In addition, social cost

and direct cost for maintenance or repair are extremely high in comparison with other

structures like pavement and bridge. We considered underground water pipelines system

as an example for empirical study. Underground water supply pipelines system often

exerts to have high uncertainty of being leaked after several decades of operation due

to the corrosion process that is not easily observed. The leakage of pipelines visually

appears without early notices and requires an immediate renewal. Thus, determining

an optimal time for renewal is always of essence in practice. This chapter presented

a mathematical model using to define optimal renewal timing with respect to optimal

total life cycle cost (LCC). In the model, the deterioration of pipelines system was

formulated by employing Weibull hazard function. In view of long-term management

plan, the model can be used to define the best pipeline technologies, the switching rates,

and switching cost in the situation of having technology innovation.

We implemented an empirical study for the model of Chapter 5 on the monitoring data

of underground water distribution system of Osaka city. The water pipelines system
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included four types of pipelines according their material differences. The old fashion

types of pipelines were made of cast-iron and constructed about 30 years to half century

ago, and the ductile cast-iron were newly introduced into the system about a decade

ago. Estimation results showed that relatively after 70 years from the construction

time, the survival probabilities of old fashion types of pipelines become more than 0.5.

Meanwhile, it takes about a century for the survival probability of ductile cast-iron to

reach to that level. Given the fixed amount of social cost, direct repair cost, and discount

factor of 0.04, the switching rates by replacing old cast-iron pipelines with innovative

ductile cast-iron were defined. In order to demonstrate the effects of social cost, direct

renewal cost, and the discount factor on the switching rates, we proposed a methodology

using sensitivity analysis, which provided a comparative pictures for selection of the best

managerial choice.

Chapter 6 presented a mixture hazard models with Markov chain model in its core.

Mixture hazard model was introduced to solve the problem of inhomogeneous moni-

toring data. In mixture model, the entire monitoring data is viewed as a collection of

sub-sampling populations or groups of infrastructure components sharing similar char-

acteristics, structural functions, and under same environmental conditions. In order to

estimate the deterioration of an individual group k in total of K groups, the hazard

function was defined as multiplicative form of hazard rate θk and heterogeneity factor

ǫk. Heterogeneity factors can follow either parametric distribution with Gamma func-

tions or semi-parametric functions with the expansion of Taylor series. To estimate the

value of heterogeneity factor, two-steps estimation approach was proposed.

Mixture hazard model is considered as an excellent tool for benchmarking implemen-

tation. By applying empirical study on targeted infrastructure groups, it is possible to

propose the best group of infrastructure in term of performance and least life cycle cost.

In view of long-term infrastructure management for developing countries, where exists

many different technologies borrowing from developed countries, this chapter recom-

mended the implementation of mixture model and benchmarking approach to find out

the best infrastructure technology, particularly for the pavement management system.

We conducted an empirical study for mixture model and benchmarking implementation

on a dataset of Vietnamese national highway collected during the period from 2001 to

2004. The healthy status of highway sections were classified in 5 discrete scales, with

1 as the best condition state and 5 as the worse condition states. Condition states

were converted values based on the range of international roughness index (IRI). In

total, there were 6510 highway sections using for the empirical test (each section is

equivalent to the length of 1 km). The characteristic variables were traffic volume and

texture depth. Estimation results showed that the average life expectancy of highway
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sections is about 13 years after the opening of services. Traffic volume was among the

main factors causing the fast deterioration speed, especially on condition state 4. To

benchmark for the best type of highway materials, we divided the data set into 3 main

groups (Bituminous penetrated macadam, bituminous surface treatment, and asphalt

concrete). It is evaluated from the mixture model that the life expectancy of the asphalt

concrete highway was about 16 years, 7 to 8 years longer than the life expectancy of

the other two types of materials. We further categorized the asphalt concrete highway

into 7 sub-groups and used a simple cost evaluation technique to find out the sub-group,

which yielded the least life cycle cost. We carried out benchmarking study also for 6

other groups according to the distribution in geographical conditions and climate zones.

With this group, it was found that the deterioration speeds of highways in the Southern

regions of the country were faster than that of the highways in the Northern and Centre

regions. The differences varied relatively from 4 to 8 years. The results provided a good

picture on deterioration status and comparative life cycle costs of highways in Vietnam.
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Chapter 1

Introduction

1.1 General introduction

Infrastructure asset management is a newly established field of research in recent years.

It is now attracting a great attention from researchers and decision makers in either

developed nations or developing nations. In developed nations, there is a strong need to

build up advance systemic asset management system in order to uphold the smooth op-

eration of mass construction works built during the economic boom period half century

ago. Whilst, in developing nations, due to shortage of resources, they are urging to as-

semble a suitable technology and program aiming toward sustainable development and

meeting the speedy demand of economic growth. Regardless of the differences in demand

among nations and systems, the radical discipline of infrastructure asset management

is analogous as we can perceive the concepts from its wide range of the definitions [1].

The entire infrastructure network of a modern society encompasses different systems

specifying by their own characteristics and distinguishing management approaches. It

is therefore a unique definition might not cover all the aspects. Nevertheless, according

to Kobayashi [2], we can understand a broaden definition of infrastructure asset man-

agement as “the optimal allocation of the scare budget between the new arrangement

of infrastructure and rehabilitation/maintenance of the existing infrastructure to maxi-

mize the value of the stock of infrastructure and to realize the maximum outcomes for

the citizens”.

Straight from the definition, it is important to raise several critical questions like “How

can we propose optimal allocation of budget?, Which maintenance/repair strategy is the

most suitable one for long-term infrastructure management? and “Which methodology

should we use to maximize the value of infrastructure stocks?”. Attempting to answer

1
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these questions have been accumulating in the research of stochastic hazard analysis,

reliability study, and optimization research. In stochastic hazard analysis, researchers

have been trying to formulate hazard models, which can be used to predict the deteri-

oration process of particular infrastructure system. In addition, by employing the cost

evaluation techniques and methodologies in operation researches, the stochastic hazard

models can be extended to incorporate cost evaluation techniques. As a result, optimal

allocation of budget and best maintenance/repair strategy can be reached.

Stochastic hazard models for optimization of infrastructure management have been

widely documented in academic research [3–6]. Recent studies focus much on formu-

lation and application of Markov hazard models [7–9], particularly in pavement man-

agement system (PMS) and bridge management system (BMS) [10–12]. As a matter of

course, the formulation and application of hazard model depends largely on the mecha-

nism of structural deterioration and monitoring data with respect to specific infrastruc-

ture systems. One infrastructure system or component has its structural deterioration

mechanism differently from that of others because of the differences in structural char-

acteristics and in-service environment status. These differences also generate technical

difficulties, time, and resource limitation for monitoring activities. It is therefore im-

portant to focus on formulating optimization methods, and to implement the methods

on actual infrastructure management.

1.2 Problem Statement

In the field of infrastructure management, a great number of hazard models on dete-

rioration forecasting have been widely documented. One major feature of the hazard

models is its ability to simulate the deterioration of an infrastructure system. Beside,

the hazard models can be utilized for setting up the maintenance and repair strategies as

well as proposing life cycle cost analysis. Especially, under requirement of infrastructure

management at network level, these objectives are particular imperative [7, 13].

A great deal of past research had paid attention to the physical mechanism of dete-

rioration of structures [14, 15].However, the past research remained in rudiment stage

of development as not specifying a clear statistical estimation method. Thus, several

problems from the estimation results can be seen as the limitations. Moreover, a great

number of monitoring data are generally required to ensure the accuracy of the estima-

tion.
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In recent decades, the research on statistical application have been extensively recorded

[16, 17]. For instance, Shin and Madanat [18] proposed a Weibull deterioration haz-

ard model to forecast the starting time of crack on pavement structures. In similar

approach, Aoki et al. [13] empirically verified the effectiveness of applying the Weibull

distribution function to forecast the deterioration of tunnel lighting facilities. However,

as earlier mentioned, these models portrayed the deterioration progress only by using

binary condition state, and thus, did not totally reflect the actual plural condition states

commonly applied in the infrastructure management system.

Attemps to tackle the emerging problems had been accumulated. A typical example is

the multi-stage model developed by Lancaster [16] for the behavior of labor transition.

In the model, he described a rational approach to estimate the transition probability

from multiple condition states. The mechanism in multi-stage model is that condition

states changes from one state to other states only in one-step. This boundary limits its

application into infrastructure management since the transition of condition states is

often observed in more than one-steps changes. In an effort to overcome this limitation,

Tsuda et al. [7] described the vertical transitive relation between condition states, and

proposed a method to estimate Markov transition probability according to multi-stage

hazard model for bridge management.

The Markov hazard model proposed by Tsuda et al. [7] has a wide range of appli-

cation in various infrastructure systems. However, the Markov transition probability

has a characteristic that the deterioration does not depend on the past deterioration.

Additionally, there is no concrete guarantee that the deterioration genuinely satisfies

the Markov characters. Especially, in the case when the total operation duration of

infrastructure is taken into estimation.

Application of Markov hazard models requires monitoring data from at least two in-

spection times. Thus, the accuracy of estimation largely depends on the quality of

monitoring data. Errors exist in monitoring data are referred as measurement errors

arising from measurement system or inspector (human or machine), inspected objects,

or from data processing and data interpretation [19]. Measurement errors tend to cause

estimation results to be different from what they should be, especially under a small

pool of monitoring data.

Methods of tackling emerging problems have been proposed with focus on formulating

evaluation techniques for quantifying the error term [19–21]. In addition, to cope with

small sampling population of monitoring data and measurement errors, researchers pro-

posed estimation methodologies using Bayesian estimation technique [22–24]. In search

for overcoming the problems in spatial sampling, which is viewed as an additional reason
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causing measurement errors, Mishalani and Gong [25] proposed an optimization model

using the latent Markov decision process to selecting the best sample size. However,

the past research had not recommended a clear analytical method for the prediction of

deterioration under measurement errors.

Hidden Markov hazard model is a branch of Markov chain model, using to eliminate

measurement errors, bias, and noise of monitoring data in a system. Some of its earlier

applications can be found in the study area like image processing and applied statistics

[26, 27], in which main focuses were on the accumulation of discrete-value in time series.

As for infrastructure management, the application of hidden Markov hazard model has

not been seen in numerous documents, but relatively only in a small scale. Most of the

past research did not clearly specify the statistical estimation method being used for

analysis. Thus, it remained at an early stage of development.

Several profound literatures on hidden Markov chain models can be found in the re-

search on economic and financial engineering. These researches tried to simulate and

evaluate the business cycle by using non-stationary series of information [28]. One of

the important findings was that the confrontational change of longitudinal data can be

simulated by the transition probability of the regimes of business cycle [29]. In addition,

it is also found that the transition probability could be identified in non-linear regres-

sion approach using Markov chain theory [28, 30]. However, the method for estimating

the Markov transition probability remains as the most challenging part, especially with

hidden Markov chain models. Attempts to overcome the limitation can be found in

a great deal of development on Bayesian estimation and Markov Chain Monte Carlo

(MCMC) simulation [31]. However, from the standpoint of our research, overcoming

the problem of measurement errors and bias from aggregate monitoring data has not

been exhaustively achieved.

Beside the problems concerning the estimation methodology, incomplete monitoring

data, and measurement errors, another attractive issue in management of infrastructure

is the problems in monitoring and management of underground infrastructure, where

monitoring and repair demands a great amount of resources. For example, the leakage

of pipeline in a mega city, if happens, will results in a huge social loss and damage other

infrastructures. Therefore, it is important to define a best timing for monitoring and

repair of underground infrastructure facilities.

Optimal renewal strategies for underground infrastructure system have long been stud-

ied. References could be dated back to 1970s with model of Shamir and Howard [32] for

pipeline network. This model introduced a simple mathematical formulation to estimate
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the optimal replacement time where the failure rate was assumed to follow the expo-

nential distribution with respect to time. An optimal period for renewal was defined

as the period that minimizes the life cycle cost over a certain planning horizon. Other

past research similarly employed the analysis of expected life cycle cost in combination

with failure rate models subjected to non-homogeneous Poisson process[33–35]. The

rule of replacement is determined by so-called “critical level” that is a probability level

of failure rate along with time.

A comprehensive study of Jido et al. [4] further discusses the optimal and repair strate-

gies. In his model, the condition state of infrastructure facility is in continuous state.

This assumption purposely encompasses the model for general case as well applicable for

various infrastructure structures. The optimal inspection time and repair/replacement

condition state are simultaneously solved by using numerical analysis. This model can

be applied for underground infrastructure systems; however, the numerical computation

of the model remains as an challenge since it requires a high degree of integration.

Along the line of stochastic modeling in infrastructure management, mixture hazard

model has been profoundly discussed. Mixture hazard model is used in the case of inho-

mogeneous monitoring data. However, estimation approach in connection with Markov

hazard models has not been studied. Mixture hazard model focuses on estimation of

heterogeneity factor of individual group in the same set of monitoring data. If it is

possible to develop a methodology for estimation of heterogeneity factor with respect to

different groups in one infrastructure system, then study on benchmarking to find out

the best infrastructure group for long-term implementation will become feasible.

The mixture hazard model is considered as an excellent technical tool for benchmarking

study, which is used to find the best practice in management and technology. The

benchmarking study is crucial important in the infrastructure management practices of

developing countries. In developing countries, the infrastructure asset management is

about at the outset of development. Thus, various problems occur across all facets of

existing infrastructure management system. For example, the pavement management

system in Vietnam is facing a fast deterioration of its infrastructure[36]. However, it

seems that the country has not experienced to find out an appropriate management

program. Neither effort in the application of HDM4 1 nor ROSY 2 has shown out a

positive future direction. It might be due to a poor system database or even due to

1HDM4-Highway Development and Management version 4, developed by the World Bank group, is
forced to be applied in recipient country of funds by the World Bank. However, the core part of its
model is hidden as a black box

2A road and pavement management program developed by Carl Bro Pavement Consultants, based
in Denmark. The system was applied in Vietnam. However, only the database part is functioning.
Other components of ROSY fail to perform their knowledge capabilities
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the operations of the programs themselves since the programs are not yet opened but

concealed as the black boxes.

1.3 Objectives of Research

The objectives for development of this paper are mainly favored by the current spatial

distribution of finding problems. In short, it can be categorized into three concrete

items as follows:

• Developing theoretical deterioration forecasting models with focuses on applica-

tion of Markov chain process for infrastructure management system. Particularly,

focuses are on building model with multi-stage Weibull hazard functions and model

on tackling the measurement errors.

• Developing methodologies for application of hazard models in real situation, spe-

cial attention will be drawn on optimal renewal strategy with regard to technology

innovation and benchmarking study with mixture hazard model.

• Verifying and applying hazard models in the real world by conducting empirical

studies on the utilities of tunnel lighting system, road pavement and water supply

pipelines.

1.4 Scope of Research

Outlines of scopes are given as follows

• Employing Weibull distribution function to solve the problem of selecting optimal

inspection time and minimum cumulative cost for repair and renewal of infrastruc-

ture utility, empirical study was conducted on utilities of tunnel lighting system

in the Japanese expressway. This study is written in chapter 3.

• Chapter 4 discusses the measurement errors in hazard analysis. Based on Bayesian

rule and Markov Chain Monte Carlo method, a new type of hazard model is

introduced. Empirical test was conducted on database of the highway network in

Japan.

• The scope of chapter 5 is to formulate an optimal time-dependent renewal model

for system with difficulty in inspection and monitoring. Empirical study was
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implemented on underground pipelines system of Osaka city. Particularly, the

model of chapter 5 is developed by in a close link with the content of Chapter 3.

• In chapter 6, focus is on development of mixture model and benchmarking ap-

proach. Specifically, discussion is on estimation approach for heterogeneity fac-

tors and a framework for benchmarking application. Empirical application was

analyzed on Vietnamese pavement system.

• Conclusions and recommendations on models and empirical studies are given at

every last section of respective chapters.

The link among the topics being presented in four main chapters can be noticed through

the definition and description of hazard rate, Weibull or exponential hazard functions

and stochastic estimation approach.

1.5 Expected Contribution

It is very positively that, after completing the research, the paper and the knowledge of

this research will contribute to some extend as follows:

• Hazard models in chapter 3 and chapter 4 are hoped to bring in innovative aca-

demic contributions, particularly about the estimation methodologies. The empir-

ical studies might be extended to cover not only tunnel lighting utilities, pavement

system but also other infrastructure system.

• In chapter 5, development of a new analytical methodology for optimal renewal

is necessary for practical management application of underground system. Espe-

cially, empirical test will be carried out on the monitoring data of water pipeline

system in Osaka city, estimation results might support Osaka water bureau in

choosing the right time and right location for annual renewal activities.

• Infrastructure asset management in developing countries is facing many problems

and difficulties. Resources, materials and researches are insufficient. However, the

current practices urgently demand an effective analytical and systemic approach

to cope with high rate of deterioration. It is therefore, the study of chapter 6

hopes to bring in a new contribution, by some means or other, to facilitate the

development of infrastructure asset management in developing countries.





Chapter 2

Infrastructure Management System

This chapter reviews the profound research works on the field of infrastructure asset

management, which was developed by asset management team at Kyoto University lead

by Professor Kiyoshi Kobayashi. Many of prominent scholars had involved in developing

one the most advance stochastic model on hazard analysis, which becomes a solid base

for the latter investigation on this field. Main references are the paper on multi-stage

exponential hazard model [7] and paper on measuring deterioration risk of infrastructure

[37].

2.1 General introduction

In recent years, infrastructure management study has attracted a great attention, espe-

cially in developed countries. After the fast growing economic period in 20th century,

a great number of major construction works such as: pavement, bridge, tunnel, dam,

airport, etc are projected to be in the status with fault performances and obsolescence.

The downturn in the performance and functionality of infrastructure system, as a whole,

imposes heavy burdens on various aspects of the socio-economic. In response, there is

no way but having to wisely mobilize and allocate proper resources into right places,

at the right time, to uphold the smooth service levels. Technically, this task turns to

be the mission of “how to establish a systemic asset management”, which is realized

heavily depending on hazard models and life cycle cost evaluation techniques.

Asking for hazard models, there are two classified modeling approaches, determinis-

tic and stochastic. Deterministic model simulates the degradation of infrastructure

structure, component by analyzing physical functionality, which can be described as a

deterministic function of several prominent characteristic variables. This approach often

9



Chapter 2. Infrastructure Management System 10

requires experiments in laboratory. On the other hand, stochastic modeling requires a

huge monitoring data, which is often technical and financial difficulty.

Under a microscopic view, deterministic approach is relevant to be applicable for a

small range of infrastructure, where experimental works can be proposed. However,

in fact, most of infrastructure asset is in a vast scale and under a dynamic impact

from environmental conditions. It is therefore, for macroscopic standpoint, stochastic

modeling would become a much prefer alternative to deterministic one.

Whatever deterministic or stochastic approach is employed, the task for management

remains unchanged. It is, a selection of a good model, which can simulate the actual

behavior of system, minimize the uncertainty and can propose a list of proactive activ-

ities (maintenance, repair, renovation) in the most optimized technical and economical

expectations. However, selection of the best suitable model is not an easy assignment

under a dynamic system, particularly in macroscopic view (network level), where multi-

objectives for management are often encountered.

There are many problems when dealing with network level of infrastructure manage-

ment. Among them, the problem due in the recording from monitoring and inspection

is an outstanding. Truly, it can be because of the system complexity, where various

performance indicators are obligated to be measured. However, we often fail to do so.

This appealing problem in management of network level has generated a voluminous lit-

eratures and effort in establishing various systemic asset management programs through

development of hazard and cost evaluation models.

In stochastic estimation approach, hazard model is formulated based on probabilistic

assumption of transition of condition states, which reflect the healthy status of the

system. Condition states are actually recorded as historical data through monitoring

and inspection over periods of time 1. In many cases, small sampling populations and

measurement errors are turned out, and consequently cause bias in estimation results

[38]. Therefore, it is necessary at the outset of this study to emphasize the development

and estimation approach of deterioration hazard models, which are formulated based

on observation of inspection data by means of probability and statistical contexts.

The following section gives background literatures on infrastructure asset management,

where emphases are on quality assurance through management cycle, recent develop-

ment of stochastic reliability using Markov chain model and the importance of mon-

itoring. Section 2.3 presents assumption and formulation of hazard models based on

Markov chain theory. A brief discussion on estimation approach for respective hazard

1year is often used for infrastructure monitoring and inspection
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Figure 2.1: Hierarchical Management Cycle.

model is presented in section 2.4. The subsequence section 2.5 further discusses the

application of Bayesian estimation in a new type of hazard model dealing with measure-

ment errors. The last part of this chapter highlights estimation results of an empirical

study conducted on the database of tunnel lighting utility.

2.2 Background

2.2.1 Overview of Infrastructure Management System

At first, a brief introduction to the objectives, missions, and functions of the entire

infrastructure asset management would be necessary before entering to discover the

relationship between statistical model and monitoring. The management structure is

hierarchical management system encompassing of three distinguish managerial levels as

displayed in Figure. 2.1. The first top strategic level deals with management mission

for long-term implementation. The second strategic management level focuses on the

plans and related activities for medium-term implementation. Whilst, the bottom level

in the hierarchical management system concerns with a specific maintenance and repair

works.

Each level of management has its own missions and objectives as well as requires a

specific analytical methodology. However, the three levels are integrated into a single

functional entity for entire network structure.
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Management at top strategic level is understood as management of infrastructure net-

work. The entire network is an integration or link of many infrastructure facilities. The

objectives of management at network level are to define the service level for each group

of infrastructure facility. This is an essential task in order to ensure the satisfaction and

safety demanding from society. If the service level falls into poor status, as a sequent,

various negative impacts will occurred. For example, bearing capacity of bridge concrete

slab must always be in the range of acceptance 2. Otherwise, a collapse would happen

that may not only cause economical loss but also claims the loss of life in some extend.

Further to long-term plan, one of the important assignment is “How to evaluate and

allocate a proper budget quota for each type or group of infrastructure”. In fact, budget

allocation must be rigorously estimated by means of life cycle cost evaluation technique,

which, in return, depending largely on the selection of the target service level, main-

tenance, and repair strategy. In practice, it is often the case that a set of the best

maintenance and repair strategies are recommended for long-term management. The

integration of hazard model and life cycle cost analysis becomes a vital tool to establish

a state of control, a set of the best maintenance and repairs, which turns out to be the

inputs or indicators for planning of the later phases.

Asking for middle-term plan, under the circumstance that a clear guidelines and out-

puts of long-term plan already established, the objective is to setting up a execution

plan, which lists up the maintenance and repair activities on respective infrastructure

facilities according to the priorities and the exposing risks. The top listed activities are

expected to execute on the infrastructures, which expose to high-risk levels, having fast

deteriorations and playing important service roles. In order to propose an appropriate

list of actions, a sound monitoring system and measurement shall be engaged.

Regarding the management and repair level, which is often carried out within a fiscal

year, budget allocation becomes a critical factor. Given the amount of fixed money

from government and the priority list of action decided for middle-term plan, a detailed

work break down structure for actual execution will be issued. In essence, the specific

maintenance and repair will be scheduled according to its priority level and in connection

with operation time of facilities. It is important at this stage to thoughtfully examine

and record the actual performance of facilities and further document its updated status

into inventory system.

As can be further discussed from the Figure 2.1, at all three levels of management,

quality of work must be assured. Therefore, the Deming cycle [39] (PLAN-DO-CHECK)

2The bearing capacity of slab must always-above safety level, which is designated in structural
analysis
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plays a center role. Any negligent performance may consequently lead to failure of

management objectives at all levels. At first, a regular CHECK by mean of monitoring

and inspection shall be well established. Secondly, a feasible PLAN with list of actions

must be defined. Finally, implementing DO according to specification and guidelines 3.

2.2.2 The Role of Hazard Model

As previously explained, one of the important role in the control process for mainte-

nance of infrastructure facility is to preserve facilities in smooth service standing. As

the deterioration progresses by time, it turns out to be the task for maintenance and

renovation of facilities, to keep the performance indicators in acceptable ranges. In this

situation, the state of control and deterioration influencing factors must be accurately

measured. By inspection and monitoring, we are able to keep an eye on the actual per-

formance indicators. However, management and maintenance are also further extended

to cover the future allocation of resources. This is therefore; hazard should be in place

for predicting the progress of degradation, and for evaluating prominent environment

factors contributing to the process. In essence, it is true to state that hazard model

is the core of any infrastructure management program. Up to present, abundant of

researches have been extensively documented with increasing emphasis on the dynamic

deterioration mechanism [40–45].

With respect to strategic level of management, the role of hazard model is to assist

the selection for the state of control, the best guidelines for construction, maintenance,

and repair, etc through the life cycle cost analysis. However, the difficulties are often

encountered due to the demand in smoothly controlling and managing at the same time

for hundreds or thousands of infrastructure facilities. Simply because, each infrastruc-

ture facility exerts to different deterioration behaviors due to variation of operation

time, environment conditions and working loads. This task can only be successfully

done through a hazard model, which considers all that factors for defining an average

trend of deterioration for entire system. In fact, this approach is statistical dynamic

oriented process that its accuracy largely relies on the accurate level in inspection and

monitoring.

To date, most of the hazard models have employed probabilistic and statistical approach,

whereby, the state of control for infrastructure component is designated in discrete

numbering range. The deterioration of infrastructure facility is simulated as transition

3Deming cycle is widely applied in quality management, especially in business and operation of
industrial factories. The center role of the cycle is toward continuous improvement of quality. A widely
used abbreviation of the cycle is PDCA, meaning Plan, Do, Check, and Acts
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pattern from one condition state to another condition state. However, the deterioration

process bears its own uncertainty due to various endogenous and exogenous factors. To

address this matter, it has been realized in recent years that the Markov chain model can

be used to define the transition probability among the condition states. Interestingly,

Markov chain model has been proved as the best applicable model in the sense of statistic

and probability [8, 46, 47].

Further to Markov chain hazard model, much of the elaboration in estimating transi-

tion probability with inspection data is numerically estimated via maximum likelihood

estimation technique. However, the challenges and difficulties somewhat belongs to how

fit the assumption and presumption of model to be, and with respect to each type of

infrastructure facility. Example of effort can be referred to Weibull hazard model for

prediction the start of crack on pavement surface [18], which typically discussed the

issues of estimation under the missing of sufficient inspection data. The appealing chal-

lenge of presumption, on the other hand, opens the room for a large distribution of

ongoing and future researches.

Keeping abreast of development trend in asset management, which tends to cope with

the dynamic complexity of deterioration process and the trend of management, this

research continues developing hazard model into several ankles, from a model which

can apply generally on different type of infrastructure, to a specific model applied on a

distinguish system. Special attention would be on presumption of parameters, embedded

variables in hazard function and estimation approaches. In addition, empirical works

shall be well addressed to link the theoretical part with practical implementation.

2.2.3 Characteristics of Monitoring Data

Moving toward management approach with statistical and probabilistic deterioration

model in the core, asset management practices must express collected information from

monitoring and inspection in its front line. Indeed, the historical information is available,

the better simulation of deterioration process become. In traditional hazard analysis

with model of only binary mode, which is often seen in facility management (where

condition state of facility is just simply GOOD or FAILURE), monitoring and inspection

would not exercise much troubles because the condition state of facility can be captured

visually.

In addition, the list of maintenance and repair is not numerous [48]. However, the

working status or condition state of infrastructure facility like bridge, road, tunnel, etc

are not just binary expression but often in a wide range of discrete numbers. Depending
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on the availability of technology in measurement, maintenance, and repair, the range

of condition state may vary differently. In this scenario, we can only carry out the

inspections following a regular period, likely two years for pavement system. In between

of the inspections, condition state of infrastructure is impossible to be revealed. This

issues lead to development of probabilistic study, which employs the Markov chain

theory. However, the points shall be addressed here is, the requirement for monitoring

and inspection extends to be among one of the most important task in infrastructure

asset management.

Inspection and monitoring at present time and in the coming years are continuously

improved, thanks to rapid development and innovation in technology. The condition

state of infrastructure facility will be measured with more and more accuracy, and

in the fast moving manner. For example, in pavement management system, nowadays,

high-speed inspection care equipped with high-resolution camera and build-in electronic

devices can rapidly transmit various forms of deterioration into inventory system and

connecting with deterioration hazard model. However, in practice, monitoring and

inspection have been examined in relatively low attention. The gathered information is

often exposed to be in incompatible form that results in time consuming for verification

and analysis. Thus, greater effort shall be imposed on creating a systemic monitoring

and inspection procedure for respective type of infrastructure.

Further to issue in monitoring data, it has been worldwide recognizable that lack of data,

measurement errors, and bias are the major problems that push inaccurate outcome

of hazard model. Condition state of infrastructure facility should be monitored and

recorded throughout its service life. Information should cover all necessary indexes, from

structural characteristic to environment imposing factors. This is, in fact, a critical issue

since most of assumption and presumption for hazard model are based on the flow of

inspection data. For example, Weibull hazard model can simulate the failure time and

take the historical operation time into estimation [13]. Whilst, Poisson deterioration

model focus on the frequency of break happened on the infrastructure facility.

More about the measurement errors and bias in monitoring, reasons could possibly due

to errors or malfunctions of monitoring and measuring devices as well as human mistakes.

This kind of problem is among the most fundamental troubles. And thus, beside a ready

data filtering and verification, a need to further develop a hazard model which consider

the measurement errors and bias would bring in a significant improvement in the field

[49].
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Note) In this example, the deterioration process of a infrastructure component if expressed in terms of
calendar time τ1, τ2, ..., τi, and condition state of the section is increased in unitary units.

Figure 2.2: Timely Transition of Condition State.

2.3 Deterioration Hazard Model

2.3.1 Deterioration Process and Rating Index

In order to analyze and forecast the deterioration of infrastructure components, it is

necessary to accumulate time series data on the condition states of the components. The

historical deterioration process of an infrastructure component is described in Figure 2.2.

This figure shows the deterioration progress of a component that has not been repaired.

In reality, there exists uncertainty in the deterioration progress of the component, and

moreover, the condition state at each point in the time axis is restricted by the time, at

which, visual inspection is carried out.

In this figure, τ represents real calendar time (the expression “time” will be used instead

throughout this paper). The deterioration of the infrastructure starts immediately after

it is opened to the public at time τ0. The condition state of a component is expressed

by a rank J representing a state variable i (i = 1, · · · , J). For a component in the good

or new situation, its condition state is given as i = 1, and increasing of condition state

i describes progressing deterioration. A value of i = J indicates that a component has

reached its service limit. In Figure 2.2, for each discrete time τi (i = 1, · · · , J−1) on the

time-axis, the corresponding condition state has increased from i to i + 1. Hereinafter

τi is referred to the time a transition from a condition state i to i+ 1 occurs.

Information regarding the deterioration process of an infrastructure can be acquired

through periodical visual inspections. However, information on the condition state based
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on continuous visual inspection is difficult to obtain. In this case, the initial inspections

is carried out at times τA on the time-axis. It is supposed that at time τA the condition

state observed by inspection is i (i = 1, · · · , J − 1). The deterioration progress in

future times is uncertain. Among the infinite set of possible scenarios describing the

deterioration process only one path is finally realized.

Figure 2.3 shows four possible sample paths. Path 1 shows no transition in the condition

state 1 from initial time τ0 to first inspection time τA. In paths 2 and 3, condition state

has advanced to one upper state condition at the calendar times τ 2
1 and τ 3

1 respectively.

The condition state of these two paths observed at time τA become 2. In a periodical

inspection scheme, the point times τ 2
1 and τ 3

1 in which the condition state has changed

from 1 to 2 are not determined. In addition, path 4 shows transitions in the condition

state at times τ 4
i and τ 4

i+1 during the inspection interval. The condition state observed

at time τA becomes 3. That is, in spite of the transitions in the condition state are

observable at the time of periodical inspection, it is not possible to obtain information

about the times in which those transitions occur.

Figure 2.4 further describes the deterioration process inferring the inspection approach

and how the condition state is assumed. In this figure, it is assumed that the condition

state at the calendar time τi−1 has changed from i − 1 to i. The calendar time τi−1 is

assumed to be equivalent to yi = 0. The time represented by the sample time-axis is

referred from now on as a “time point”, and differs from “time” on the calendar time

axis. The times τA and τB correspond to the time points yA and yB on the sample axis.

It can be seen that yA = τA − τi−1, yB = τB − τi−1.

Information on the condition state i at the beginning of the calendar time τi−1 cannot

be obtained in a periodical inspection scheme. Therefore, time points yA and yB on the

sample time-axis cannot be correctly obtained either. For convenience of description,

it is assumed that the information at the time a point is known in order to develop

the model, despite this assumption is not necessarily essential. The following paragraph

discusses that even without information at time points yA and yB an exponential hazard

model can be estimated.

In the case the condition state of a infrastructure component at time τi (time point yC)

is assumed to change from i to i + 1, the period length in which the condition state

has remained at i (referred as the life expectancy of a condition state i) is represented

by ζi = τi − τi−1 = yC . The life expectancy of a condition state i is assumed to be a

stochastic variable ζi with probability density function fi(ζi) and distribution function

Fi(ζi). Random variable ζi is defined in the domain [0,∞]. The distribution function is
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Note) In this example, the deterioration process of an infrastructure component is expressed in terms
of four different sample paths. In paths 2 and 3 the condition state has advanced to one upper state
condition at the calendar times τ2

1
and τ3

1
respectively. In path 4, the condition state has increased one

state at each time τ4

1
and τ4

2
. However, in the case of a periodical inspection carried out at times τA

the condition state at any point in time between inspections cannot be observed.

Figure 2.3: Transition Pattern of Condition State.

defined as

Fi(yi) =

∫ yi

0

fi(ζi)dζi. (2.1)

The distribution function Fi(yi) represents the cumulative probability of the transition

in the condition state from i to i + 1. Condition state i is assumed to be observed at

initial time yi = 0(time τA). The time interval measured along the sample time-axis

until the time point yi is τi−1 + yi. Therefore, using the cumulative probability Fi(yi),

the probability F̃i(yi) of a transition in the condition state i during the time points

interval yi = 0 to yi ∈ [0,∞] is defined by F̃i(yi):

Prob{ζi ≥ yi} = F̃i(yi) = 1 − Fi(yi). (2.2)

The conditional probability that the condition state of a component at time yi advances

from i to i+ 1 during the time interval [yi, yi + ∆yi] is defined as

λi(yi)∆yi =
fi(yi)∆yi

F̃i(yi)
, (2.3)

where the probability density λi(yi) is referred as the hazard function.
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Note) In the case the condition state changes from i − 1 to i at the calendar time τi−1 the inspections
carried out at times τA and τB will also correspond to the points in time yA and yB when using τi−1

as the time origin. The figure shows a sample deterioration path in which the condition state has
advanced in one unit to yc in the interval time τi−1 − yC . However, observations at time τi−1 are not
possible in a periodical inspection scheme, so there is no way to obtain observation at yA, yB and yC .
Nevertheless, it is possible to use the information contained in z = yC − yA ∈ [0, Z].

Figure 2.4: Model of Deterioration Process.

2.3.2 Markov Transition Probability

The transition process among the condition states of an infrastructure component is

uncertain. Therefore, future condition states cannot be forecasted deterministically.

In this situation, Markov transition probability is employed to represent the uncertain

transition pattern of the condition states during two time points. Markov transition

probabilities can be defined for arbitrary time intervals.

For simplification, Markov transition probabilities can be defined and used to forecast

the deterioration of a infrastructure component based on the information from periodical

inspection scheme shown in Figure 2.4. The observed condition state of the component

at time τA is expressed by using the state variable h(τA). If the condition state observed

at time τA is i, then the state variable h(τA) = i. A Markov transition probability,

given a condition state h(τA) = i observed at time τA, defines the probability that the

condition state at a future time (τB for example) will change to h(τB) = j:

Prob[h(τB) = j|h(τA) = i] = πij. (2.4)
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The Markov transition probability matrix can be defined and rearranged by using the

transition probabilities between each pair of condition states (i, j) as

Π =









π11 · · · π1J

...
. . .

...

0 · · · πJJ









. (2.5)

The Markov transition probability (2.4) shows the transition probability between the

condition states at two given times τA and τB, therefore, it is straightforward that the

values of a transition probability will differ for different time intervals. Since deteriora-

tion continues as long as no repair is carried out πij = 0 (i > j). From the definition of

transition probability
∑J

j=1 πij = 1. Following conditions must be satisfied:

πij ≥ 0

πij = 0 ( when i > j)
∑J

j=1 πij = 1















. (2.6)

The worse level of deterioration is expressed by the condition state J , which remains as

an absorbing state in the Markov chain as long as no repair is carried out. In this case

πJJ = 1.

Markov transition probabilities are defined independently from the deterioration history.

As shown in Figure 2.4, the condition state at the inspection time τA is i, however, the

time, at which, condition state changed from i − 1 to i is unobservable. In a Markov

chain model, it is assumed that the transition probability between the inspection times

τA and τB is only dependent on the condition state at time τA.

The Markov chain model is operative and widely applied in management of infrastruc-

ture system. Particularly, at management of network level, Markov chain model is

used to define the average transition probability of the entire system, or a group of

infrastructure components given two periodical inspection data.

2.3.3 Exponential Hazard Model

In this section, it is assumed that the deterioration of a infrastructure component satisfies

Markov property, and the hazard function is independent of the time yi on the time-axis.

That is, for a fixed value of θi > 0, we have

λi(yi) = θi . (2.7)
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By using the hazard function (2.7), it is possible to represent a deterioration process of

a infrastructure component that satisfies the Markov property (Independence from the

past history). In addition, it is assumed that θi 6= θj (i 6= j). By differentiating both

sides of equation (2.2) with respect to yi,

dF̃i(yi)

dyi
= −fi(yi). (2.8)

Equation (2.3) then becomes

λi(yi) =
fi(yi)

F̃i(yi)
= −

dF̃i(yi)
dyi

F̃ (yi)
=

d

dyi

(

− log F̃i(yi)
)

. (2.9)

Considering that F̃i(0) = 1 − Fi(0) = 1, and by integrating equation (2.9), we come up

with

∫ yi

0

λi(u)du =
[

− log F̃i(u)
]yi

0
= − log F̃i(yi). (2.10)

Using the hazard function λi(yi) = θi, the probability F̃i(yi) that the life expectancy of

the condition state i becoming longer than yi is expressed by

F̃i(yi) = exp

[

−

∫ yi

0

λi(u)du

]

= exp(−θiyi). (2.11)

Equation (2.11) is exponential form of hazard model. According to equation (2.8), the

probability density function fi(ζi) of the life expectancy of the condition state i is

fi(ζi) = θi exp(−θiζi). (2.12)

By then, considering that the condition state has changed to i at the time τi−1, and

remains constant until the inspection time τA. Obvious to say, the condition state

observed at inspection time τA is i. In term of duration, condition state i has actually

stayed in the period yA. The probability, to which the condition state i keeps remaining

in a subsequent time zi (≥ 0) measured after the duration yA, is then defined:

F̃i(yA + zi|ζi ≥ yA) = Prob{ζi ≥ yA + zi|ζi ≥ yA}. (2.13)

Dividing both sides of equation (2.13) by the probability F̃i(yi) described in equation

(2.2) results in

Prob{ζi ≥ yA + zi}

Prob{ζi ≥ yA}
=
F̃i(yA + zi)

F̃i(yA)
. (2.14)
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With reference to equation (2.11), the right side of equation (2.14) becomes:

F̃i(yA + zi)

F̃i(yA)
=

exp{−θi(yA + zi)}

exp(−θiyA)
= exp(−θizi). (2.15)

Based on this conditional rule, we can define the probability, to which, the condition

state i observed at time τA continues to be observed at subsequent inspection time

yB = yA + Z is analogous to equation (2.15):

Prob[h(yB) = i|h(yA) = i] = exp(−θiZ), , (2.16)

where Z expresses the interval between two inspection times. The probability Prob[h(yB) =

i|h(yA) = i] is nothing but the Markov transition probability πii. Obviously, if the ex-

ponential hazard function is employed, the transition probability πii is dependent only

on the hazard rate θi and the inspection interval Z.

2.3.4 Weibull Hazard Model

In reality, the data concerning deterioration of infrastructure facilities are not only con-

dition state but also their embedded characteristics. This information can be observed

from inspections. However, in actual practices, the inspection intervals of different

infrastructure, components do not possess the same duration. In this respect, Markov

chain model using only two recent inspection data might not reflect overall performance.

Weibull hazard function can capture the historical performance is thus beneficial in this

circumstance.

The assumption of deterioration can be referred to Figure 2.5. In this figure, condition

state starts to change from i− 1 to i at time τi−1. yi is elapsed time or duration of stay

in condition state i. The duration yA is estimated by yA = τA− τi−1 and understood as

the elapsed time between calendar time τi−1 and τA.

From equations (2.1-2.3), applying similar mathematical approach like in equations (2.8-

2.16), in the form of Weibull distribution, hazard function λi, survival probability F̃i(yi)

and probability density function fi(ζi) can be expressed:

λi(yi) = θiαiy
αi−1
i , (2.17)

F̃i(yi) = exp(−θiy
αi

i ), (2.18)

fi(ζi) = θiαiζ
αi−1
i exp(−θiζ

αi

i ). (2.19)
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Note) Condition state changes from i − 1 to i at calendar time τi−1, which refers as starting point of
deterioration process. The inspection is carried out at time τA and at which we have corresponding time
length yA counted from τi−1. The condition state continues to occupy length yB in its deterioration
path. However, at time τi−1, there is no observation. In the sequel, the exact time length yA and yB

on the time axis can not be determined.

Figure 2.5: Condition State and Inspection Interval.

2.4 Deterioration Hazard Model Estimation Method

2.4.1 Exponential hazard model

2.4.1.1 Defining Markov transition probabilities

This section continues the formation of transition probability earlier explained in section

2.3.2 and section 2.3.3 for general case.

Let us discuss the formulation of model in the case condition state i advancing in only

one-step, to condition state i+ 1 in the inspection interval from τA to τB. At first, it is

assumed that condition state i remains during duration yA and in subsequent increment

of time si = yA+zi, (zi ∈ [0, Z]). Secondly, condition state i changes into i+1 at yA+zi.

Thirdly, condition state i+ 1 keep unchanging during the interval [yA + zi, yB].

Although the exact time, at which the condition state transits from i to i + 1 can not

be traced by periodical inspection, it can be temporarily assumed that the transition

occurs at the time point (yA + z̄i) ∈ [yA, yB]. Given the condition state i staying during

yA and remains until the time yA + z̄i, the conditional probability density, to which
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condition state i+ 1 being observed at yA + z̄i can be defined:

gi(z̄i|ζi ≥ yA) =
fi(z̄i + yA)

F̃i(yA)
=
θi exp{−θi(z̄i + yA)}

exp(−θiyA)
= θi exp(−θiz̄i). (2.20)

Satisfying the above condition, the conditional probability density that the condition

state i+ 1 being observed at the inspection time yB becomes:

qi+1(z̄i|ζi ≥ yA) = gi(z̄i|ζi ≥ yA) · F̃i+1(yB − z̄i − yA)

= θi exp(−θiz̄i) exp{−θi+1(Z − z̄i)}

= θi exp(−θi+1Z) exp{−(θi − θi+1)z̄i}. (2.21)

It is noticed that s̄i = yA + z̄i is assumed as fixed value. However, the elapsed time ζi

of a condition state i is truly a stochastic variable, thus, z̄i may change in range [0, Z].

The Markov transition probability that the condition state change from i to i+1 during

the time points yA and yB is then defined by the law of integration:

πii+1 = Prob[h(yB) = i+ 1|h(yA) = i] =

∫ Z

0

qi+1(zi|ζi ≥ yA)dzi

=

∫ Z

0

θi exp(−θi+1Z) exp{−(θi − θi+1)zi}dzi

=
θi

θi − θi+1

{− exp(−θiZ) + exp(−θi+1Z)}, (2.22)

where πii+1 > 0 is indifferent to the relative size between θi and θj. The assumption

θi 6= θi+1 implies 1 > πii+1. As these characteristics are trivial in the derivation process

of equation (2.22), the verification is omitted.

Moving to general case, when in the next inspection, condition state j(j ≥ i + 2) is

observed. The distribution function and the probability density function concerning the

duration condition state j actually stays in can be assumed as Fj(yj) and fj(yj). The

hazard function applying on the condition state j is denoted by λj(yj) = θj.

The process, where by happening the transition of condition state from i to i+1 during

interval [yA, yB] can be perceived as follows. At first, the condition state i remains during

the elapsed time yA and in a subsequent time s̄i = yA + z̄i ∈ [yA, yB]. Secondly, exactly

at time s̄i = yA + z̄i, condition state i changes into i+ 1. Thirdly, condition state i+ 1

remains in the duration [s̄i = yA+ z̄i, s̄i+1 = s̄i+ z̄i+1 (≤ yB)] before turning to condition

state i + 2 at s̄i+1 = s̄i + z̄i+1. Fourthly, after repeating the same transition process,

condition state happens to change into j at time s̄j−1 (≤ yB), and keep unchanging until

inspection time yB. If the entire process of transition is considered, a simultaneously
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conditional probability density function can be defined as follow:

qj(z̄i, z̄i+1, · · · , z̄j−1|ζi ≥ yA)

= gi(z̄i|ζi ≥ yA)

j−1
∏

m=i+1

fm(z̄m)F̃j

(

Z −

j−1
∑

m=i

z̄m

)

=

j−1
∏

m=i

θm · exp

{

−

j−1
∑

m=i

θmz̄m − θj(Z −

j−1
∑

m=i

z̄m)

}

=

j−1
∏

m=i

θm · exp

{

−θjZ −

j−1
∑

m=i

(θm − θj)z̄m

}

, (2.23)

where z̄i, · · · , z̄j−1 are regarded as fixed values. However, the elapsed time ζi of condition

states i (i = 1, · · · , J − 1) is a stochastic variable, the values of zi ≥ 0, · · · , zj−1 ≥ 0 are

variable, which subject to satisfy the following condition:

0 ≤ zi + zi+1 + · · · + zj−1 ≤ Z. (2.24)

As the sequent, for continuous observed time, the Markov transition probabilities πij is

conditional probability and being described in following equation:

πij = Prob[h(yB) = j|h(yA) = i] =

∫ Z

0

∫ Z−zi

0

· · ·

∫ Z−
∑j−2

m=i zm

0

qj(zi, · · · , zj−1|ζi ≥ yA)dzi · · · dzj−1

=

j
∑

k=i

k−1
∏

m=i

θm
θm − θk

j−1
∏

m=k

θm
θm+1 − θk

exp(−θkZ). (2.25)

Details of description for getting into equation (2.25) is given in the paper of Tsuda

et al. [7]. For convenient reading, general forms of Markov transition probabilities are

given in the following equations:

πii = exp(−θiZ), (2.26-a)

πii+1 =
θi

θi − θi+1

{− exp(−θiZ) + exp(−θi+1Z)}, (2.26-b)

πij =

j
∑

k=i

k−1
∏

m=i

θm
θm − θk

j−1
∏

m=k

θm
θm+1 − θk

exp(−θkZ), (2.26-c)

πiJ = 1 −
J−1
∑

j=i

πij, (2.26-d)

(i = 1, · · · , J − 1) (j = i, · · · , J).
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2.4.1.2 Time adjustment of Markov transition probability

Markov transition probabilities depend on the inspection interval Z as can be revealed

from equations (2.26-a) - (2.26-d). In cardinal matrix form, we can further expressed

the time interval depend of Markov transition probability:

Π(Z) =









π11(Z) · · · π1J(Z)
...

. . .
...

0 · · · πJJ(Z)









. (2.27)

Inspections are scheduled in a regular based time with integer number n. If two inspec-

tion interval Z and nZ are considered, the two Markov transition probability matrix

Π(Z) and Π(nZ) can also be used to express the dependency on inspection interval.

Based on the law of matrix multiplication, the relation between Π(Z) and Π(nZ) is

clearly defined:

Π(nZ) = {Π(Z)}n . (2.28)

Equation (2.28) expresses the time adjustment condition of the Markov transition prob-

ability matrix. If n becomes very big number, a stationary state of transition probabil-

ities will be obtained. It is concluded here that with respect to different time interval

Z, we can adjust the properties of Markov transition probability to reflect the actual

inspection schedule in practices.

2.4.1.3 Estimation of Markov Transition Probability

(a) Contents of periodical inspection data

Suppose periodical inspection data on the same kind of K infrastructure components

is available. An inspection sample k(k = 1, · · · , K) describes two continuous peri-

odical inspections carried out at times τ kA and τ kB and the respective condition states

ratings h(τ kA) and h(τ kB) measured at those times. Differences in the inspection intervals

of the samples are inconvenient. Based on the above inspection data, the inspection

interval of a sample k is defined as Zk = τ kB − τ kA. In addition a dummy variable

δkij (i, j = 1, · · · , J ; k = 1, · · · , K) based on the deterioration progress patterns between

two inspections times is defined as

δkij =

{

1 when h(τ kA) = i and h(τ kB) = j

0 otherwise
. (2.29)
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Furthermore, the structural characteristics and usage conditions that affect the deterio-

ration of an infrastructure component are represented by the vector xk = (xk1, · · · , x
k
M).

xkm (m = 1, · · · ,M) represents the value of a characteristic variable m observed in the

sample data k. The information contained in the inspection sample data k can be re-

arranged as Ξk = (δkij, Z
k,xk). On the other hand, the exponential hazard function of

the deterioration process for a sample data k(k = 1, · · · , K) is

λki (y
k
i ) = θki (i = 1, · · · , J − 1).

It is noted here that the hazard rate for condition state J is not defined because J is

absorbing condition state (πJJ = 1). The hazard rate θki (i = 1, · · · , J−1; k = 1, · · · , K)

characterizing the deterioration process is considered to change in relation to the vector

xk as follow:

θki = xkβ′
i, (2.30)

where βi = (βi,1, · · · , βi,M) is a row vector of unknown parameters βi,m (m = 1, · · · ,M)

and the symbol ′ indicates the vector is transposed. In order to obtain Markov transition

probabilities, at first, the exponential hazard function λki (y
k
i ) = θki is estimated based

on the observed sampling information Ξk (k = 1, · · · , K). Secondly, Markov transition

probabilities can be estimated based on the relation with hazard function.

This methodology permits estimation for Markov transition probabilities of every indi-

vidual infrastructure component. However, as a rule of thumb, it is better to estimate

the average transition probability for the entire group of infrastructure instead of esti-

mating for individual component.

(b) Infrastructure management indicators

Using exponential hazard model, we can define one of the important management indi-

cator for infrastructure. The indicator is the remaining duration (RMDi) of condition

state i, which reflects how long condition state i can survive given condition that it

has been observed in previous inspection time. RMDi is actually analogous to survival

function F̃i(y
k
i ) in infinite domain [16]:

RMDk
i =

∫ ∞

0

F̃i(y
k
i )dy

k
i . (2.31)
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Based on equation (2.11), the remaining duration RMDk
i of component k can be further

defined in the exponential form:

RMDk
i =

∫ ∞

0

exp(−θki y
k
i )dy

k
i =

1

θki
. (2.32)

Assuming the condition state after opening the infrastructure is i. The expected value

ETj (j = 2, · · · , J) referred as average life expectancy of condition state j, is thus a

summation of all transition duration from every condition state i:

ETj =

j
∑

i=1

1

λi
. (2.33)

Rating j (j = 1 · · · , J) and average relation of elapsed time ETj(x) are used to draw

the expectation deterioration curve.

(c) Estimation of the hazard model

Information Ξk = (δ̄kij, Z̄
k, x̄k) can be acquired in relation to the inspection sample k,

where the symbol¯indicates an actual measurement. The Markov transition probabilities

can be expressed in terms of the hazard functions as described in equations (2.26-a)-

(2.26-d). The relationship between hazard rate θki (i = 1, · · · , J − 1; k = 1, · · · , K) and

the characteristic variables x̄k is shown in equation (2.30). Moreover, the transition

probability also depends on inspection interval Z̄k.

For clarity of presentation, the transition probability πij is expressed as a function of the

measured data (Z̄k, x̄k) obtained from visual inspection and the unknown parameters

βi as πij(Z̄
k, x̄k : βi). If the deterioration progress of the infrastructure components

in a sample K are assumed to be mutually independent, the log-likelihood function

expressing the simultaneous probability density of the deterioration transition pattern

for all inspection samples is [50, 51]

ln[L(β)] = ln

[

J−1
∏

i=1

J
∏

j=i

K
∏

k=1

{

πij(Z̄
k, x̄k : β)

}δ̄k
ij

]

=
J−1
∑

i=1

J
∑

j=i

K
∑

k=1

δ̄kij ln
[

πij(Z̄
k, x̄k : β)

]

, (2.34)

where δ̄kij, Z̄
k and x̄k are all determined through inspections, and βi (i = 1, · · · , J − 1)

are parameters to be estimated. Estimations of the parameters β can be obtained by
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solving the optimality condition:

∂ ln[L(β̂)]

∂βi,m
= 0, (i = 1, · · · , J − 1;m = 1, · · · ,M) (2.35)

that result from maximizing the log-likelihood function (2.34). The optimal values

β̂ = (β̂1,1, · · · , β̂J,M) are then estimated by applying a numerical iterative procedure

such as the Newton Method for the (J − 1)M order nonlinear simultaneous equations

[52]. Furthermore, estimator for the asymptotic covariance matrix of the parameters is

given by

Σ̂(β̂) =

[

∂2 ln{L(β̂)}

∂β∂β′

]−1

. (2.36)

The (J − 1)M × (J − 1)M order inverse matrix of the right-hand side of the above

formula, composed by the elements ∂2 ln{L(β̂)}/∂βi,m∂βi′,m′ , results to be the inverse

matrix of the Fisher information matrix.

(c) Average Markov transition probability

Given the vector xk and the inspection interval Zk, the Markov transition probabilities

of a infrastructure component can be estimated by using equations (2.26-a)-(2.26-d).

Markov transition probabilities satisfying time adjustment conditions can be estimated

for arbitrary inspection intervals by changing the value Zk.

In actual practice, if estimation for every infrastructure component is obligated, it is not

wisely, since this task certainly consumes enormous time and resources. Typically, if

statistical standpoint were considered, it would be better to define the average transition

probability rather than a transition probability for every component.

In order to develop a method to estimate the average transition probability, which

also satisfies the time adjustment condition, the hazard rate θki (k = 1, · · · , K) can be

understood as depending on the distribution of characteristic variable x. Within this

assumption, the hazard rate appears to be a function of distribution function Γ(x).

With reference to the entire sampling population, the expected value of hazard rate

E[θi] can be ultimately defined:

E[θi] =

∫

Θ

xβ′
idΓ(x) , (2.37)

where Θ is referred to the entire population sample. The Markov transition probability

matrix is understood to satisfy the time adjustment conditions if it can relax two con-

ditions. First condition is, it must be estimated by use of exponential hazard equations
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(2.26-a) - (2.26-d). Second condition requires the matrix properties for each sample k

to be defined based on individual hazard rate θki (i = 1, · · · , J − 1; k = 1, · · · , K). By

means of this explanation, the Markov transition probability matrix estimated by using

equation (2.37) is fully satisfying the time adjustment condition.

2.4.2 Hierarchical index deterioration hazard model

2.4.2.1 Derivation of Markov transition probability

In the previous section, we have noticed that a serial of discrete condition states repre-

sents the healthy statuses of infrastructure facilities. However, in reality, there are many

cases that healthy status of infrastructure component should be described by more than

two indexes. For example, in pavement management system, to express the cracking

process, two kinds of indexes can be used in parallel. The first index is damage level,

which represents how serious the crack is on the pavement surface. Meanwhile, the

second index presents the formation of crack pattern. This situation is displayed in Fig-

ure 2.6. In this example, the deterioration process is regarded as hierarchical network

type of deterioration, in which, both damage level and cracking pattern progress with

multi-stage indexes composing of more than two condition states.

To generalize the above situation, we can denote the pair of deterioration condition

states as (i, j) with damage level i(i = 1, ..., L) and damage type j(j = 1, ..., R). At

inspection time τA, the observed state variable is h(τA) = (i, j). In the next inspection at

time τB, it is supposed that the pair of condition states changes to h(τB) = (l, r). Under

such assumption, the Markov transition probability is then defined for the transition of

deterioration pair (ij, lr):

∏

=









π00 · · · π0L

...
. . .

...

o · · · πLL









. (2.38)
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Note) © represents deterioration condition state. Deterioration is expressed as a pair (i, j). i is referred
to damage level i(i = 0, 1, 2, 3) while j denotes the crack type j(j = 1, 2, 3). The cracking progresses
by mean of pattern transition from deterioration state (0, 0) to the right side of the figure.

Figure 2.6: The Process of Cracking Progress in Pavement System.

where o is 0 element procession in the left low triangular of the transition matrix,

πil(i, l = 1, ..., L) is a block procession with their components as follows:

π00 = π00,00 ,

π0l = (π00,l1 · · · π00,lR) ,

πil =









πi1,l1 · · · πi1,lR
...

. . .
...

πiR,l1 · · · πiR,lR









.

(2.39)

We admit the fact that the property of Markov transition probability in equation (2.38)

will change its value if having any change in the duration of inspection interval. In addi-

tion, in the situation that no maintenance and repair activities have been implemented

in the period between two inspections, deterioration will progress, and the transition

probability will satisfy conditions πij,lr = 0(i > l),
∑L

l=i

∑R
r=1 πij,lr = 1:

πij,lr ≥ 0

πij,lr = 0 (when i > l)
∑L

l=i

∑R
r=1 πij,lr = 1















. (2.40)

The pair of state (L, r) (r = 1, ..., R) is understood as absorbing pair of condition states

with its Markov transition probability πLr,Lr if the condition for no maintenance and

repair in the history hold.

Let us consider the transition from the pair of condition state (i, j) to (i + 1, r). The

hazard rate is the summation of transition intensity ρijr being counted in the entire
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domain of r:

θij =
R
∑

r=1

ρijr . (2.41)

2.4.2.2 The Hierarchical Hazard Model Formulation

In this section, we explained the procedure to formulate the transition probability of

hierarchical hazard model in the assumption that observed condition states at inspection

time t = τA, t = τB are h(τA) = (i, j) and h(τB) = (l, r) with inspection interval

Z = τB − τA.

• When (i, j) = (l, r)

In this case, over the period between two inspections, there has been no sign of deteri-

oration. The original pair of condition states (i, j) remains. By a similar provision to

equation (2.16), the Markov transition probability for the pair of condition state (i, j)

remains in the duration Z can be defined:

πij,ij(Z) = exp(−θijZ) . (2.42)

At absorbing state (i = L), the probability of transition absolutely equals to 1 (πLj,Lj(Z) =

1).

• When l = i+ 1 ≤ L− 1

In this case, the damage level changes from τA = i to τB = i + 1 with its transition

frequency of 1. While, the damage type (cracking form in PMS as an instance), may

vary in the range of R (R is absorbing state for damage type). Thus, we obtain the

probability density function of the transition:

fij(ζij) = θij exp(−θijζij) =
R
∑

r=1

ρijr exp(−θijζij) , (2.43)

where ζij is the life expectancy of condition state i. ρijr, as described earlier in equation

(2.41), is transition intensity with respect to the change of condition state from (i, j) to

(i+1, j). The change of condition state from (i, j) to (i+1, r) in the interval of inspection

[τA, τB) can happen at any arbitrary time. In another word, it is understandable to say

the deterioration may shift from time τA to time si+1 = τA + zij, (zij ∈ [0, Z], and from

that time onward till the next inspection time τB, condition state (i+ 1, r) remains.
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Further to the change of deterioration from pair (i, j) to pair (i + 1, r), it is obvious

to say that an accurate time, at which, the change happened, can not be defined in a

deterministic way. Only possible way to simulate the process is to assume the transition

of condition state happens at time (τA + z̄ij) ∈ [τA, τB). With this assumption, it is

understandable that the pair of condition state (i, j) remains from the inspection time

τA until arbitrary time τA + z̄ij in (i, j) before reaching to a new pair of condition state

(i+ 1, r). It is possible therefore to express the conditional probability density gijr(z̄ij),

at which, happening the change of the pair of condition state from (i, j) to (i+ 1, r) at

time τA + z̄ij:

gijr(z̄ij) =
ρijr
θij

fij(zij + τA)

F̃ij(τA)

=
ρijr exp{−θij(z̄ij + τA}

exp(−θijτA)
= ρijr exp(θij z̄ij) . (2.44)

Additionally, if the entire inspection duration Z is considered. The conditional proba-

bility density qijr(z̄ij) (at which the condition state (i+ 1, r) remaining until inspection

time τB) can be expressible by means of the joint probability between the conditional

probability gijr(z̄ij) and the survival probability F̃i+1,r(τB − z̄ij − τA):

qijr(z̄ij) = gijr(z̄ij) · F̃i+1,r(τB − z̄ij − τA)

= ρijr(z̄ij) exp(−θij z̄ij) exp{−θi+1,r(Z − z̄ij)}

= ρijr(z̄ij) exp(−θi+1,rZ) exp{−(θij − θi+1,r)z̄ij} .

(2.45)

In equation (2.45), the elapsed time s̄i+1 = τA + z̄ij is considered as a fixed term. How-

ever, as a matter of course, the change of pair of condition state can happen at any

arbitrary time zij within the inspection interval Z. Hence, the Markov transition prob-

ability πij,i+1r, to which, the deterioration progresses from (i, j) to (i+ 1, r) in between

the two consecutive inspection times is just the integration of conditional probability

qijr(z̄ij) in continuous time frame:

πij,i+1r(Z) = Prob[h(τB) = (i+ 1, r)|h(τA) = (i, j)]

=
Z
∫

0

qijr(zij)dzij =
Z
∫

0

ρijr exp(−θi+1rZ) exp{−(θij − θi+1r)zij}dzij

=
ρijr

θij−θi+1r
{− exp(−θijZ) + exp(−θi+1rZ)} .

(2.46)

In equation (2.46), regardless of how positive or negative in the relation between θij and

θi+1r is, the value of Markov transition probability is always positive πij,i+1r > 0.

Regarding the estimation for Markov transition probability πij,lr, a similar probabilistic

inference and calculation can be derived for a general case. Details has already explained
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in subsection 2.4.1. The following subsection briefly describes the estimation method

for useful connection.

2.4.2.3 Estimation method for hierarchical index deterioration hazard model

The obtained inspection information on sample k can be described as ξ̄k = (δ̄k, Z̄k, x̄k)

with the sign [¯ ] inferring an actual measurement value. δ̄k is an additional dummy

variable receiving its value of 1 if h(τ kA) = (i, j) and h(τ kB) = (l, r), otherwise, its value is

assumed to be equal to 0. The transition intensity ρkijr(i = 0, ..., L− 1; r = 0, ..., R; k =

1, ..., K), which forms a part of Markov transition probability, can be expressible through

the peculiar characteristic vector xk and the unknown parameter βijr:

ρkijr = xkβ
′

ijr . (2.47)

Moreover, since the inspection interval Z̄k also effects on the change of Markov transi-

tion probability πij,lr, we can express the transition probability in the functional form

πij,lr(Z̄
k, x̄k : β). (Z̄k, x̄k) is measured by inspection and β = (β000, ..., βL−1RR) is vector

of unknown parameter deeming to be estimated. If assuming the mutually indepen-

dence of occurrence of condition state on total K samples, we are able to express the

simultaneous probability density by means of log-likelihood function as follow:

ln ℓ(β) = ln
L−1
∏

i=0

R
∏

j=0

L−1
∏

l=i

R
∏

r=0

K
∏

k=1

{

πij,lr(Z̄
k, x̄k : β)

}

δ̄k
ij,lr

=
L−1
∑

i=0

R
∑

j=0

L−1
∑

l=i

R
∑

r=0

K
∑

k=1

δ̄kij,lr ln
{

πij,lr(Z̄
k, x̄k : β)

}

.

(2.48)

This log-likelihood function defines that it is a function of unknown parameter β given

observational data δ̄kij,lr, Z̄k, x̄
k. Solution approach using maximum likelihood estimation

to this function is similar to the approach that has already explained in section 2.4.1.3.

2.5 Hazard Model with Bayesian Estimation

2.5.1 Necessity of Bayesian estimation

There are a vast number of references on Bayesian estimation worldwide. Especially, in

statistic and probability area, the method in Bayesian estimation turns out to be among

the powerful tool for estimation of statistical and probabilistic models under constrains
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Note) Bayesian update is applied at respective stages when having new observed data. As the sequent,
accuracy level happens to increase. Moreover, the influence of prior subjective information will be
weakening throughout the time.

Figure 2.7: Bayesian Update Principle Chart.

of sampling population. Bayesian estimation uses the collected prior information on the

behavior of event to update the probability of occurrence of event in the future [31].

From the standpoint of infrastructure asset management, Bayesian estimation, without

any doubt, indeed becomes of necessity since it is often the case that we have to es-

timate the model’s parameters under the umbrella of small sampling data [22–24]. In

addition, measurement errors and bias in observed inspection data have been reported

as significant factors, which appear to violate the accuracy of estimation [25].

Let us have a look at the Figure 2.7 to understand the principle of powerful Bayesian

estimation for infrastructure asset management. The figure illustrates three different

situations when Bayesian principles are applied. Level of accuracy of hazard model will

increase if plenty of prior information and observed data is available. The estimation

results are thought to be improved as moving the estimation procedure on the right

hand side of the Figure.

In reality, it is extremely important to apply Bayesian update rule. For examples,

technology innovation in infrastructure asset would probably change the behavior of de-

terioration process (maintenance, repair, renovation with new technology). Thus if only

relies on the past inspection without considering the changes, a wrong result may be

encountered as a consequence. In another perspective, applying Bayesian estimation, we

can utilize the expertise and the vast rich knowledge, which has been constantly accu-

mulated throughout the years. As a result, we can minimize the subjective assumption

in prior information.
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2.5.2 Bayesian estimation and its prior subjective information

Maximum likelihood estimation approach, as described in section 2.4, is an excellent

approach to estimate the model’s parameter under the circumstance that numerous

data has been accumulated. The reason behinds that is, as a probabilistic approach,

maximum likelihood estimation illustrates the behavior of distribution of parameter

around the mean. In another word, the asymptotic behavior can only be acquired if

huge number of data is available.

However, in many cases, it is hard to have a full set of sufficient data. And thus,

if continuing with maximum likelihood approach, the bias in estimation results may

occur, especially under data insufficiency. Furthermore, there happens a high possibility

that measurement errors and bias actually exist within the sampling population. It is

therefore, when Bayesian estimation is applied with use of the prior information, the

estimation results can be greatly improved.

In Bayesian estimation, the posterior distribution of the parameter will be estimated by

using the likelihood function defined by the employing prior distribution of parameter

and observed data [53]. The likelihood function is denoted as ι(θ| ξ) with θ and ξ respec-

tively inferring unknown parameter and observed data. Based on Bayesian theorem, the

unknown parameter θ is assumed to be a random variable and the Bayesian posterior

probability π(θ| ξ) of θ given observed data ξ can be defined as

π(θ| ξ) =
ℓ(θ| ξ)π(θ)

∫

Θ
ℓ(θ| ξ)π(θ)dθ

, (2.49)

where π(θ) is the prior probability of θ that was inferred before new evidence becoming

available. The sign Θ denotes the space of unknown parameter. In some extend, it is

understandable to approximate π(θ| ξ) to the value of the nominator in equation (2.49):

π(θ| ξ) ∝ ℓ(θ| ξ)π(θ). (2.50)

The denominator in equation (2.49) is regarded as a constant term inferring the standard

or the prior predicted distribution of π(θ| ξ).:

m(ξ) =

∫

Θ

ℓ(θ| ξ)π(θ)dθ. (2.51)

In Bayesian updating rule, the steps of estimation are as follows: 1) Assuming the

prior probability density function π(θ) based on the prior experience information, 2)

Defining the likelihood function ℓ(θ| ξ) based on newly observed data ξ, 3) Updating

the probability density function π(θ| ξ) for the parameter θ based on the Bayesian rule
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in equation (2.49). In this method, the probability distribution of unknown parameter

θ is not estimated in the same way like that by using maximum likelihood estimation,

but by Bayesian updating rule in the condition of obtaining the posterior distribution.

2.5.3 Markov Chain Monte Carlo Simulation

In general, there is a limitation in estimating parameter of deterioration hazard model

either with maximum likelihood and Bayesian updating rule if the problem of multi-

integration exists [31, 54, 55]. In recent years, Markov Chain Monte Carlo (MCMC)

has been introduced in the field of Bayesian statistics, and as the sequent, greatly

improve the estimation for posterior distribution without considering such a high and

sophisticated level of integration [31].

In MCMC simulation, Gibbs sampling and Metropolis Hastings (Metropolis-Hastings or

MH) techniques have been remarkably discussed [31, 56]. Reference to image restoration

was among the first application of MCMC simulation [57]. Of that study, the algorithm

of Gibbs Sampling was used to estimate the posterior distribution in Bayesian estimation

[58]. In MH law, the iterative parameter θ is defined by repeatedly generating random

numbers through the conditional probability density function π(θ| ξ).

2.6 Example of Empirical Application to Infrastruc-

ture Asset Management

This section discusses the possibility of applying the hazard model on infrastructure

asset management at strategic level. Details of estimation is referred to paper of Aoki

et al. [13]. In his paper, Weibull hazard model is employed to suggest the optimal timing

of inspection and figure out the best possible renewal policies on tunnel lighting system,

which composes as an important structure of expressway. The study focused on deriving

the Markov chain process along with Weibull distribution, and further combined hazard

model with life cycle cost analysis based on the existing list of renewal.

This model enables to evaluate for not only renewal cost of an individual lighting lamp

(low-pressure sodium lamp) but also its optimal inspection time and the cycle of com-

pulsory renewal. Further more, as a general requirement of management; an amount

of necessary fixed cost is also generated based on least life cycle cost estimation. The

model can also be extended to incorporate various types of risks in form of economic

term like loss of money due to traffic congestion, which results from either incident of
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Figure 2.8: Survival Probability of Tunnel Lighting Lamp (low-pressure sodium
lamp).

lighting lamp or inspection and renewal activities. As the sequent, the problem con-

cerning the trade-off situation for inspection period, fixed cost, renewal cost can be

successfully tacked. Thus, administrators can save the budget and effectively manage

the system in the end.

As can be seen from Figure 2.8, administrators are able to predict the probability

of survival in general for the entire lighting system. This survival probability (vertical

axis) decreases along the operation time (horizontal axis) is estimated by use of equation

(2.17) in section 2.3.4. By categorizing the lighting system into several types, it is also

possible to compare the deterioration curves among those types. This kind of survival

probabilities, deterioration curves, estimated by Weibull hazard model eventually turn

out to be the input of life cycle cost evaluation, which is further displayed in Figure 2.9.

Figure 2.9 expresses the relation between life cycle cost of tunnel lighting system and the

risk management level by drawing the cost-risk curve. The life cycle cost is a summation

of inspection cost, inspection cost, renewal cost (if applied) and traffic restriction cost.

Whilst, the risk management level is in fact concerning the elapsed time in operation of

lighting lamp counting from beginning to the time, at which, encountering the break-

down. In another work, it concerns the so-called Value at Risk (VaR). As can be seen

from Figure 2.9, the relation between trade-off is, as the risk management level grows

on the right side of the horizontal axis, then the life cycle cost becomes smaller. In

another meaning, the length of inspection interval sketches longer and maximum oper-

ation time of lighting lamp is determined. In contrast, as the risk management level

becomes smaller than 0.1, the life cycle turns to get an intense upturn. It might be a
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Note) Curve is drawn based on N = 100 lamps, at the risk management level of 0.05, the C-U curve is
showed in dotted line. The solid line explains the C-U relation, which belong to possible management
objective.

Figure 2.9: Cost-Risk Curve.

save option to select the risk management point from 0.2 onward because the variation

in change of life cycle cost is in a small scale.

2.7 Summary and Recommendations

This chapter has presented a profound literature review on the hazard analysis in infras-

tructure management system. It strongly emphasized the importance of infrastructure

management system in today modern society with its central role, which aims to pro-

vide the best service for society systematically. Attention has been given to analytical

approach and model formulation based on stochastic methodology. Moreover, the im-

portance role of monitoring and a good inventory box in the system has also been

realized throughout the texts. Markov chain model has received a special attention, it

possibly become one of a central model for any further extension.

In addition, this chapter has strongly emphasized the application of Bayesian estimation

method and Markov Chain Monte Carlo (MCMC) simulation technique. Bayesian es-

timation combined with MCMC simulation becomes a powerful approach to tackle the

issues of limited monitoring sampling data, measurement errors, bias and loss of sample.

This would become a very promising horizon for future researches. Moreover, this sec-

tion has briefly discussed the combination of hazard model and life cycle cost analysis,

which is, without any doubt, compulsorily required in any infrastructure management

system.
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Based on the theory and model discussed in this chapter, the writings and discussion in

subsequent chapters of this dissertation will further explore our mathematical formula-

tion of hazard models with empirical studies on selected infrastructure networks such

as tunnel lighting system, pavement system and pipeline system.



Chapter 3

A Multi-stage Weibull Hazard

Model with Tunnel Application

3.1 General introduction

Effective management of any infrastructure utilities such as tunnel lighting in highway

systems requires comprehensive understanding of the entire operational processes of the

utility as well as monitoring of its performance and conditions throughout its opera-

tional life. Continuous inspection and monitoring of the system are, however, often

technically or financially difficult. Therefore, a need to develop an analytical deteriora-

tion forecasting model that can estimate the deterioration speed of either an individual

component or the entire infrastructure system has been widely recognized.

Various studies have attempted incorporation of historical background of infrastructure

performance into a deterioration model. For example, Aoki et al. [13] proposed the

Weibull distribution function to estimate the deterioration of lighting facilities in tunnel

systems. This expressed the condition state of tunnel lighting facilities in binary terms.

However, it is known that the actual deterioration process of most infrastructure systems

is better described by plural discrete condition states [59]. In order to overcome this

limitation, the Markovian transition probability can be used to express two or more

condition states in the deterioration process of infrastructure.

The Markov chain model is a stochastic approach that is widely used to forecast the

deterioration speed of an infrastructure system such as a bridge network [3, 9, 10, 60].

Lee et al. [61] and Tsuda et al. [7] further improved the Markov chain model by proposing

a handy methodology to estimate the Markovian transition probability. The advantages

41
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of these models are that they predict future deterioration according to information from

two inspection times and they do not require extensive historical data.

This chapter proposes a new deterioration forecasting model for infrastructure man-

agement, which expresses the deterioration speed in two or more condition states in

conjunction with elapsed time, followed by the Weibull distribution function. To begin

with, sections 3.2 and 3.3 detail the mathematical formulation of the time dependence

transition probability using the Weibull distribution function and the estimation ap-

proach. Section 3.4 presents an empirical study using actual data from a tunnel lighting

system in Japan. Finally, the conclusion summarizes the contributions made by this

paper, and points out future research needs.

3.2 Formulation of the Model

3.2.1 Deterioration State Probability

We denote s as an arbitrary elapsed time counted from the initial time τ0. The state

variable h(s) expresses the actual condition state corresponding to time τ = τ0 + s.

The deterioration process is described by using conditional probability, which describes

condition state h(s) = i as occuring at time s dependently on the given condition state

at τ0 (hereafter referred to deterioration state probability):

Prob[h(s) = i|h(0) = 1] = πi(s). (3.1)

If the deterioration state probability πi is defined in the range of condition state i(i =

1, ..., I), then a time dependence deterioration state probability vector can be further

expressed as

Π(s) =









π1(s)
...

πI(s)









. (3.2)

The deterioration state probability in equation (3.1) represents the probability of each

condition state i being observed at time τ = τ0 + s. In other words, it expresses

the probability of state occurrence in the elapsed time s from the initial time. The

summation
∑I

i=1 πi(s) = 1 is justified by the definition of deterioration state probability.
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3.2.2 Deterioration State Probability from Initial Time

We assume the opening of an infrastructure facility at time τ0 with condition state 1

(Fig. 2.5). At time τ , the observed condition state is i. On the horizontal time axis,

condition states of the infrastructure facility can be displayed with respect to arbitrary

time from τ0 to τ . The probability of the event that condition state 1 changes to

condition state i can be represented by state probability πi(s) (where, s = τ − τ0):

3.2.2.1 a) i = 1

Condition state remains as 1 until time τ . The deterioration state probability π1(s) is

exactly equal to the survival probability expressed in equation (2.11):

π1(s) = F̃1(s) = exp(−θ1s
α1). (3.3)

3.2.2.2 b) i = 2

In the case when condition state i = 2 is observed at time τ , the condition state changes

from 1 to 2 at time τ1 ∈ [τ0, τ ]. The probability density that the life span of condition

state 1 becomes ζ1 = τ1 − τ0 can be expressed as f1(ζ1) by using the Weibull function.

ζ1 (≥ 0) is a random variable, which owns its value in the following range:

0 ≤ ζ1 < s. (3.4)

State probability π2(s) with condition state i = 2 being observed at time τ is shown in

the next equation:

π2(s) =

∫ s

0

f1(ζ1)F̃ (s− ζ1)dζ1. (3.5)

3.2.2.3 c) 3 ≤ i < I

For a general case, as condition state at time τ can take value between 3 ≤ i < I,

the event of changes in condition state will occur at respective times τ1, · · · , τi−1 (τ0 ≤

τ1 ≤ · · · ≤ τi−1 < τ). The following steps describe the mechanism of these changes. At

first, condition state 1 remains in a duration from time τ0 to time τ0 + ζ1 ∈ [τ0, τ ], as

illustrated in Fig. 3.1. Secondly, at time τ1, condition state changes from 1 to 2. Thirdly,

condition state 2 remains in a duration from time τ1 until time τ2 = τ1 + ζ2 ∈ [τ1, τ ],

before turning into condition state 3 exactly at time τ2. Fourthly, after undergoing



Chapter 3. Multi-stage Weibull Hazard Model with Tunnel Application 44

similar processes, condition state advances to i at time τi−1 = τi−2 + ζi−1 ∈ [τi−2, τ ], and

remains at condition state i until time τ . To simulate the occurrence of these events,

we use the probability density qi(ζ1, , · · · , ζi−1) in the entire duration s = τ − τ0:

qi(ζ̄1, · · · , ζ̄i−1) =
i−1
∏

m=1

fm(ζ̄m)F̃i(s−
i−1
∑

m=1

ζ̄m). (3.6)

Random variable ζm (≥ 0) takes its value in the range to satisfy

0 ≤ ζ1 + ζ2 + · · · + ζi−1 < s. (3.7)

Therefore, the state probability πi(s), which represents observed condition state i (i =

3, · · · , I − 1) at time τ = τ0 + s, can be expressed as follows:

πi(s) =

∫ s

0

∫ s−ζ1

0

· · ·

∫ s−
∑i−2

m=1 ζm

0

qi(ζ1, · · · , ζi−1)dζ1 · · · dζi−1. (3.8)

3.2.2.4 d) i = I

Condition state I is absorbing state, which refers to the worst deterioration. At the time

when I has been reached, if no repair occurs, the state I will remain forever. From the

definition of the deterioration state probability, the probability of observing absorbing

state I is shown in the following equation:

πI(s) = 1 −
I−1
∑

m=1

πm(s). (3.9)

3.2.3 Simultaneous Occurrence Probability of Condition State

at Two or more than Two Times

We assume that there are two inspection times τA and τB, at which the condition states

i and j (i ≤ j; j = 1, . . . , I − 1) are observed respectively. τ0 is the initial time of the

deterioration process as shown in Fig. 3.1. The transition pattern of condition states

occurs in the following steps. Firstly, at time τi−1, condition state i − 1 changes into

condition state i. However, condition state i can be revealed only at inspection time τA.

The duration of this event can therefore be defined as τA = τi−1 + yi. Secondly, at time

τi = τA + zi, the condition state advances from i to i+ 1. Thirdly, condition state i+ 1

will rise to j − 1 at time τj−1. Finally, after τj−1, the condition state will reach j and

remain in condition state j until inspection time τB.
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Note) In the figure, the initial time is τ0. Condition state i is observed at time τA. For two inspection
times τA and τB , we represent sA = τA − τ0, sB = τB − τA as elapsed time. The time length yi is
measured from time τi−1 to time τA, and zi is measured from time τA to time τi. The total life span
(survival time) of condition i is expressed as ζi = yi + zi.

Figure 3.1: Deterioration from Initial Time and Observation of Condition State.

In Fig. 3.1, we define durations sA = τA− τ0 and sB = τB − τA. It should be recognized

from Fig. 3.1 that condition state i − 1 changes into condition state i at time τi−1 =

τA − yi. In other words, condition state i is revealed at inspection time τA; however,

it has already existed over the duration yi. In addition, we define ζi as the life span

of condition state i. If condition state j observed at inspection τB is considered, the

probability for this event to happen is thus dependent on the information concerning

condition state i. Thus, by the law of conditional probability, the following conditional

probability density function is defined:

gij(sB, z̄i, ζ̄i+1, · · · , ζ̄j−1|ȳi) =
fi(ȳi + z̄i)

F̃i(ȳi)
j−1
∏

m=i+1

fm(ζ̄m)F̃j(sB − z̄i −

j−1
∑

m=i+1

ζ̄m). (3.10)

In equation (3.10), yi and zi are the durations measured from time τi−1 to time τA and

from time τA to time τi respectively, as shown in Fig. 3.1. The life span of condition

state i is defined by means of variable ζi = yi + zi. Variables zi (≥ 0), ζi+1 (≥ 0),

· · · , ζj−1 (≥ 0) are random variables with their values to satisfy the following equation:

0 ≤ zi +

j−1
∑

m=i+1

ζm < sB. (3.11)

Given the elapsed time yi and condition state i observed at inspection time τA, we
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define the conditional probability κij(sB|yi), to which condition state j is observed at

inspection time τB = τA + sB:

κij(sB|ȳi) =

∫ sB

0

∫ sB−zi

0

· · ·

∫ sB−zi−
∑j−2

m=i+1 ζm

0

gij(sB, zi, ζi+1, · · · , ζj−1|ȳi)dzidζi+1 · · · dζj−1. (3.12)

Condition state i can appear at any arbitrary time from the initial time to inspection

time τA. The duration yi therefore has a range in the domain 0 ≤ yi ≤ sA. Eventually,

we can define the probability density ηi(sA, yi), which describes the probabilistic relation

of condition state i occurring at time τi−1 = τA − yi:

ηi(sA, yi) =

{

∫ sA−yi

0

∫ sA−yi−ζ1

0

· · ·

∫ sA−yi−
∑i−3

m′=1
ζm′

0

i−1
∏

m′=1

fm′(ζm′)dζ1 · · · dζi−2

}

F̃i(yi), (3.13)

ζi−1 = sA − yi −
i−2
∑

m′=1

ζm′ .

As a sequel, we are able to define the explicit form for transition probability πij(sA, sB),

which expresses the conditional probability for condition state i being observed at τA

and condition state j being observed at τB = τ0 + sA + sB:

πij(sA, sB) = Prob[h(sA) = i, h(sA + sB) = j] =

∫ sA

0

ηi(sA, yi)κij(sB|yi)dyi. (3.14)

The probability that condition state I is observed at inspection time τA can be seen

in equation (3.9). If at inspection τB, condition state I is revealed, we can define the

following transition probability:

πiI(sA, sB) = πi(sA) −
I−1
∑

j=i

πij(sA, sB). (3.15)

3.2.4 Management Indicators for Infrastructure Management

The life expectancy of condition state i is an important indicator for infrastructure

management. Life expectancy is viewed as duration, in which condition state i remains

until entering condition state i + 1. In other words, life expectancy of condition state

i is the remaining duration counted from initial time until time τi, at which, condition

state i changes to condition state i + 1. Probabilistically, life expectancy of condition
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state i can be expressed by means of the survival probability function F̃i(yi) [16]:

RMD(i) =

∫ ∞

0

F̃i(yi)dyi. (3.16)

The abbreviation RMD stands for “Remaining Duration”. Based on equation (2.11),

we have the following equation:

RMD(i) =

∫ ∞

0

exp(−θiy
αi

i )dyi. (3.17)

Management indicator RMD(i) is estimated based on the assumption that at time τi−1

condition state changes from i − 1 to i, as shown in Fig. 3.1. This calculation seems

to have the limitation that it does not capture the historical duration measured from

initial time. Thus, it is necessary to define the life expectancy of condition state i based

on the initial time. We denote RL(i), standing for “Remaining Life”, as a management

indicator, which indicates the duration of condition state i counted from initial time.

As can be seen from Fig. 3.1, RL(i) is actually measured from time τ0 to time τi. Given

the total duration s for condition state i to remain until reaching condition state i+ 1,

we can define the probability density ρi(s) for condition state i ending its service life at

time τ = τ0 + s:

ρi(s) =

∫ s

0

∫ s−ζ1

0

· · ·

∫ s−
∑i−2

m=1 ζm

0

i−1
∏

m=1

fm(ζm)fi(s−
i−1
∑

m=1

ζm)dζ1 · · · dζi−1. (3.18)

RL(i) is the expected period until the ending of condition state i counted from initial

time, and thus can be further defined:

RL(i) =

∫ ∞

0

sρi(s)ds. (3.19)

It is noted that RMD and RL are fundamentally estimated based on two different

assumptions of starting time. Thus, there exists a high possibility that the estimation

results of these two management indicators are different. In addition to management in-

dicators RMD(i) and RL(i), there is a need to estimate the life expectancy of condition

state j as well. As a matter of fact, the event condition state j appears conditionally

dependent on condition state i, which seems to be observed at inspection time τA.

By the law of conditional probability, we can define the conditional probability den-

sity νj(s|h(sA) = i), at which condition state will disappear given the visual observed

condition state i at time τA = τ0 + sA and the elapsed duration time s:

νj(s|h(sA) = i) =
M ∗N

πi(sA)
, (3.20)
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where,

M =

∫ sA

0

∫ sA−yi

0

∫ sA−yi−ζ1

0

· · ·

∫ sA−yi−
∑i−3

m′=1
ζm′

0

fi(yi + zi) ·

i−1
∏

m′=1

fm′(ζm′)dyidζ1 · · · dζi−2dzi,

N =

∫ s

0

∫ s−zi

0

· · ·

∫ s−zi−
∑j−2

m=i+1 ζm

0

j−1
∏

m=i+1

fm(ζm)

fj(s− zi −

j−1
∑

m=i+1

ζm)dζi+1 · · · dζj−1,

(i ≤ j; j = 1, · · · , I − 1) and ζi−1 = sA − yi −
i−2
∑

m′=1

ζm′ .

The denominator of equation (3.20) refers to deterioration state probability for condition

state i, which remains until time sA. In the nominator, M represents the event that

condition state i remains until increment time zi, and N represents the event that

condition state i changes to j at elapsed time ζj−1 and stays up to duration s. Eventually,

we define the life expectancy of condition state j (j ≥ i) as RLj(h(sA) = i), which

conditionally depends on condition state i with duration sA:

RLj(h(sA) = i) =

∫ ∞

0

sνj(s|h(sA) = i)ds, (3.21)

(i ≤ j; i, j = 1, · · · , I − 1).

3.3 Estimation Method

3.3.1 Content of Data from Visual Inspection

Suppose visual inspection data on the same kind of K infrastructure components is

available. An inspection sample k (k = 1, · · · , K) describes two visual inspection times

carried out at initial time τ̄ k0 and τ̄ kA with the concerning condition state h(s̄k). The

symbol ⌊̄ ⌉ indicates an actual measurement. s̄k = τ̄ kA − τ̄ k0 is the duration between two

inspection times. In addition, a dummy variable δ̄
k

= {δ̄ki (i = 1, · · · , I)} based on the

deterioration progress patterns between two inspection times is defined as

δ̄ki =

{

1 h(s̄k) = i

0 Otherwise
. (3.22)



Chapter 3. Multi-stage Weibull Hazard Model with Tunnel Application 49

Furthermore, in order to describe the information in sample k, we use characteristic vec-

tor x̄k = (x̄k1, · · · , x̄
k
N) and elapsed duration s̄k. x̄kn (n = 1, · · · , N) represents the value

of a characteristic variable n visually observed in the sample k. Thus, the information

contained in inspection sample k can be rearranged as ξ̄k = (δ̄
k
, s̄k, x̄k). As a sequel,

we can further express the Weibull hazard function for sample k as

λki (yi) = θki αiy
αi−1
i (i = 1, · · · , I − 1). (3.23)

It is noted that the hazard function is not defined for condition state I since I is

absorbing state and lim
s→∞

πI(s) = 1. As a matter of course, the value of hazard rate

θki (i = 1, · · · , I − 1; k = 1, · · · , K) changes according to the property of characteristic

vectors of sample k. The dependency of hazard rate on characteristic vector x̄k can be

formulated by means of functional relationship as

θki = x̄kβ′
i (3.24)

where βi = (βi1, · · · , βiN) is a row vector of unknown parameter βin (n = 1, · · · , N),

and the symbol ′ indicates that the vector is transposed. The functional relationship

between hazard rate and characteristic variable can be changed according to preferences

in estimation. This issue can be further viewed in the relationship assumption in our

empirical study.

Later in this section, the methodology to estimate the transition probability will be

presented. At first, based on the Weibull hazard function λki (yi) with collected sample

information ξ̄k (k = 1, · · · , K), the likelihood function for transition probability is

defined. Based on the maximum likelihood estimation approach, we can obtain the

values for unknown parameters in equation (3.24) and further for the parameterized

values of the Weibull hazard function. Secondly, the estimation method is proposed

for the transition probability when there are two or more than two inspection data.

Finally, we explain the necessity of estimating the average deterioration probability as

a representative value when there is a large pool of sampling data.

3.3.2 Estimate of Weibull Hazard Function

As earlier mentioned, data concerning inspection sample k can be rearranged as ξ̄k =

(δ̄
k
, s̄k, x̄k). The application of the Weibull hazard function in estimating the deteri-

oration state probability is discussed in equations (3.3),(3.5),(3.8),(3.9). Applying the

characteristic vector x̄k of infrastructure component, we can calculate the hazard rate

expressed in equation (3.24). Moreover, the deterioration state probability depends on
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the duration of operation s̄k after the opening time of the infrastructure. Therefore,

in order to express clearly this characteristic, the deterioration state probability πi(s̄
k)

can be defined as a function of measured visual inspection data (s̄k, x̄k) and unknown

parameter vector γ = {α,βi (i = 1, · · · , I − 1)}. α = (α1, · · · , αI−1) is a row vector of

unknown parameter αi (i = 1, · · · , I − 1).

If the deterioration progress of the infrastructure components in K samples are assumed

to be mutually independent, the log-likelihood function expressing the simultaneous

probability density of the deterioration transition pattern for all inspection samples is

ln[L(γ)] = ln

[

I
∏

i=1

K
∏

k=1

{

πi(s̄
k, x̄k : γ)

}δ̄k
i

]

=
I
∑

i=1

K
∑

k=1

δ̄ki ln
[

πi(s̄
k, x̄k : γ)

]

, (3.25)

where δ̄
k
, s̄k, x̄k are all determined through inspection and γ is a parameter to be

estimated [50, 51]. Estimation of parameter γ, given an amount of γ̂ = (γ̂10, · · · , γ̂I−1N),

can be obtained by solving the optimality conditions

∂ ln[L(γ̂)]

∂γin
= 0, (i = 1, · · · , I − 1;n = 0, 1, · · · , N), (3.26)

that result from maximizing the log-likelihood function (3.25). The optimal values

α̂i = γ̂i0 and β̂i = (γ̂i1, · · · , γ̂iN) are then estimated by applying a numerical iterative

procedure such as the Newton method for the (I − 1) × (N + 1) order nonlinear simul-

taneous equations [62]. Moreover, estimator for the asymptotical covariance matrix of

the parameters (Σ̂(γ̂)) is given by

Σ̂(γ̂) =

[

∂2 ln{L(γ̂)}

∂γ∂γ ′

]−1

. (3.27)

The (I−1)(N+1)×(I−1)(N+1) order invert matrix of the right-hand side of the above

equation, composed of the element ∂2 ln{L(γ̂)}/∂γin∂γi′n′ results in the invert matrix

of the Fisher information matrix [63]. In the above-mentioned calculation process, it

might not be necessary directly to estimate the deterioration state probability πi(s)

from the log-likelihood function of equation (3.25). The deterioration state probability

can be estimated from multiple integration of equation (3.8). Suffice it to say that

the accuracy of estimation for γ̂ depends on the accuracy in calculating the multiple

integration. Considering this challenge, in this research we employ double integration,

suggested by Steven and Raymond [64], to improve the accuracy of multiple integral

calculation.
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3.3.3 Estimation Method for the Case of Having Data from

Two or more than Two Visual Inspections

In general management practice, the database is composed only of data from two inspec-

tion times. However, future monitoring activities may be expanded so as to provide the

advantage of data for more than two inspection times. Therefore, besides the estimation

methodology for two inspection times as earlier discussed, it is necessary to develop a

method to take multi-inspection times into account.

For sample k, we assume the condition states h(s̄kA) and h(s̄kA + s̄kB) are respectively

observed at inspection times τ̄ kA and τ̄ kB. τ̄ k0 is defined as initial time. Thus, two durations

of operation according to two inspection times are further defined as s̄kA = τ̄ kA − τ̄ k0 and

s̄kB = τ̄ kB−τ̄
k
A. Additionally, a dummy variable ∆̄

k
= {δ̄kij (i = 1, · · · , I−1, j = 1, · · · , I)}

is determined based on the transition pattern observed from inspections:

δ̄kij =

{

1 h(s̄kA) = i, h(s̄kA + s̄kB) = j

0 Otherwise
. (3.28)

The information of inspection sample k can be rearranged as Ξk = (∆̄
k
, s̄k, x̄k). Since

the duration s̄k = (s̄kA, s̄
k
B) is observable, the deterioration state probability can be

estimated according to equations (3.14) and (3.15). Precisely, the transition probability

πij(s̄
k
A, s̄

k
B) can be expressed by means of the function of πij(s̄

k, x̄k : γ), in which the

data (s̄k, x̄k) are available from visual inspections, thus making unknown parameter γ

the only target of estimation. The description of unknown parameter γ = {α,βi (i =

1, · · · , I − 1)} is similar to that explained earlier in this section.

In a similar approach to equation (2.34), we define the log-likelihood function for tran-

sition probability as follows:

ln[L(γ)] = ln

[

I−1
∏

i=1

I
∏

j=i

K
∏

k=1

{

πij(s̄
k, x̄k : γ)

}δ̄k
ij

]

=
I−1
∑

i=1

I
∑

j=i

K
∑

k=1

δ̄kij ln
[

πij(s̄
k, x̄k : γ)

]

. (3.29)

By applying the maximum likelihood estimation approach, we can obtain the value for

unknown parameter γ̂. We will omit a detailed explanation, since this is similar to a

reference mentioned earlier in this section. Nevertheless, it is worth emphasizing that

the case when i = I is not embedded in the degree of equation (3.29) since I is the

absorbing state.
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3.3.4 Average Deterioration State Probability

The research methodology for deterioration estimation can be applied to every indi-

vidual infrastructure component. However, in practice, when the deterioration pattern

of a large amount of sampling data is considered, it is more convenient to estimate

the average deterioration state probability rather than to focus on that of individual

components.

With regard to the relationship between the hazard rate θki (k = 1, · · · , K) of sample

k and the characteristic variable x, it is understandable to express the distribution

function of characteristic variable as Γ(x). Thus, statistically, the expected value of the

hazard rate E[θi] can be defined by means of the distribution function of characteristic

variable x:

E[θi] =

∫

Θ

xβ′
idΓ(x), (3.30)

where Θ refers to the entire sample population. After averaging the value of the hazard

rate, we can again define the Weibull hazard function as

λi(yi) = E[θi]αiy
αi−1
i . (3.31)

Eventually, after the average hazard rate is estimated from equation (3.31), the aver-

age deterioration state probability (equations (3.3), (3.5), (3.8) and (3.9)) and the life

expectancy of condition states (equations (3.19) and (3.21)) can be obtained.

3.4 Empirical Study

3.4.1 Overview of Empirical Study

In this section, we present an empirical application to further verify the applicability

of the model, using visual inspection data on the tunnel lighting system of northeast

branch office of the Japan Public Highway Corporation. Visual inspection was con-

ducted to record the condition of steel board and stainless steel plate (SUS), the two

main materials used in the lighting system. However, due to the lack of sufficient data

on SUS, only results from the visual observation of steel board are used as an applica-

tion experience. Data concerning the structural visual inspection of tunnel lighting were

collected between April 2002 and January 2003. The database also contains informa-

tion from the opening date. Average duration from the starting of operation to visual
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Table 3.1: Deterioration Rank Criterion.

Inspection result Condition state Physical description
OK 1 There is no damage.
B 2 The depression is not seen though there

is damage.
The progress of the damage is observed.

A 3 There is damage, the depression is seen,
and the repair is carried out.
Urgent repair is not required.

AA 4 Damage is obvious and urgent repair is
required to enable functioning.

Table 3.2: Number of Sample Data.

Number of samples Average operation duration

OK → OK 2 5.24 years

OK → B 1,321 8.31 years

OK → A 10,238 11.98 years
(no historical repair) 6,073 9.72 years

OK → AA 750 15.91 years
(After repair) 4,915 15.36 years

Total 12,311

inspection is about 11.8 years. The condition states are ranked by a rating of OK, B,

A, and AA, explained in detail in Table 3.1.

In total, we used 12, 311 sample data from the database for empirical analysis. From

among the sample data, the transition of deterioration ranks in regard to visual in-

spection times are rearranged in Table 3.2. The average duration of operation counted

from the staring time of the infrastructure is also shown in the table. The deterioration

pattern is reflected by the transition of deterioration condition states being observed

at respective visual inspection times. If the deterioration progress of a lighting facility

advances to condition state AA, repair is carried out. The recorded data also shows

the classification at the time when visual inspection is carried out. For example, in the

total amount of 12, 023 samples in condition state A at visual inspection time (group

of transition pattern from OK → A), there are 6, 073 samples in the group of those

without historical repair, 4,165 samples having already received repair in the past. Vi-

sual inspection also reveals 750 samples reaching condition state AA, which required

immediate repair. Consequently, the total numbers of samples receiving repair action

became 4, 165 + 750 = 4, 915 in the end, and the average operation duration of those

facilities reached about 15.36 years.
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3.4.2 Hazard Model Estimation

As for physical characteristics, at first, four variables are reviewed as potential candi-

dates, including elapsed time s̄k, type of lighting facility (normal lighting and eased

lighting), traffic volume and tunnel inclination. The purpose of combining explanatory

variables is to maximize the aforementioned log-likelihood function with a significant

level of t− values. Finally, we selected elapsed time and type of lighting as explanatory

variables. In addition, we defined the Weibull hazard function as a function of variables

as follows:

λki (y
k
i ) = αi(βi0 + βi1d

k)(yki )
αi−1 (i = 1, 2, 3). (3.32)

In equation (3.32), a dummy variable dk is added. Its value is defined based on the type

of lighting facility. For example, dk = 0 is for the case when sample k is a normal lighting

facility; otherwise, dk = 1. Variable yki indicates the elapsed time over which sample

k stays in condition state i. It is noted that variable yki cannot be observed directly.

Thus, when we detect ī as the condition state of sample k, we define the summation of

duration as
∑ī

m=1 y
k
m = s̄k.

Estimation results are presented in Table 3.3. It can be seen from the table that there

is a significant difference between types of lighting facilities. The values of the unknown

parameter and its statistical t − value associated with the type of lighting facility re-

ceives its negative value for condition state 1. After verification, we recognized the fact

that eased lighting, which is located at the tunnel opening, has an early deterioration

speed. Thus, the estimation results corresponded exactly to the observed information.

Regarding the deterioration of condition states 2 and 3, estimation results proved that

type of lighting facility does not have a significant impact.

Table 3.3 further displays comparative results between the Multi-stage Weibull hazard

model and the Multi-state Markovian hazard model. The reason behind the comparison

is that the Multi-state Markovian hazard model is in fact a special case of the Multi-

stage Weibull hazard model, as when acceleration parameter α in the Weibull hazard

function equals 1. It is realized from the table that the acceleration in value of α exactly

corresponds to the growth of condition states (α1 = 2.039, α2 = 1.623, and α3 = 5.709).

In addition, it is concurrently found that the increase in the elapsed time is in correlation

with the increase in value α.

Fig. 3.2 displays the relationship between elapsed time y1 of condition state 1 and

the survival probability probability F̃1(y1) for both normal lighting (dk = 1) and eased

lighting (dk = 0). It can be seen from the figure that normal lighting has a higher
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probability of surviving than the eased lighting. The life expectancy of condition state

1 for eased lighting is relatively short. For instance, after approximately y1 ≃ 1.7 years

in operation, 80% of the total number of eased lighting in condition state 1 will change

into condition state 2. On the other hand, 50% of the total number of normal lighting

still remains in condition state 1.

Fig. 3.3 shows the distribution pattern of condition states in relation to the duration of

operation time of a normal lighting facility. It is noted that after approximately 6 years

in operation, condition state 1 will be on the verge of disappearing. Based on this finding,

it is advisable to implement visual inspection after about 6 years. Moreover, as noted

from table 3.2, condition states 3 and 4 account for a large proportion of the sampling

population after about 15 years of operation. Therefore, in terms of management, it

might be too risky for inspection time to be allocated around the time when there is a

high possibility of the onset of condition states 3 and 4.

3.4.3 Calculation of Management Indicators

Table 3.4 presents the estimation results for management indicators RMD(i) and RL(i).

It is certain that the values of RMD(i) and RL(i) estimated by the Multi-stage Marko-

vian hazard model exert only slight differences. However, a significant difference between

the values of RMD(i) and RL(i) is realized for condition state 3 when employing the

Multi-stage Weibull hazard model (RMD(3) = 7.30 and RL(3) = 12.95). This result

further proves the impact of elapsed time on estimation results.

A comparision of the values of RL(3) between the two models shows that the value

estimated with the Multi-stage Weibull hazard model is shorter than that estimated

by using the Multi-stage Markovian hazard model (RL(3) = 16.34). In addition, the

average duration measured in Table 3.2 (15.36) is shorter than that of the Multi-stage

Markovian hazard model. These differences are due to the fact that the average op-

eration duration calculated in Table 3.2 and the average operation duration calculated

with the multi-stage Markovian hazard model took 4, 165 samples, which had already

received repair in the past. In other words, the data used for calculation in Table 3.2

and for the multi-stage Markovian hazard model has not been censored.

Finally, the estimation results for management indicator RL3(h(sA) = i) are shown in

Table 3.5, where values of RL3(h(sA) = i) are presented corresponding to the elapsed

time sA and condition state i. The values presented in the last column of the table

highlights the fact that when elapsed time increases, the life expectancy of condition

states tends to decrease.
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Table 3.3: Result of Hazard Model Estimation.

Multi-stage Weibull hazard model Multi-stage Markovian hazard model
Condition state αi βi0 βi1 E[θi] αi βi0 βi1 E[θi]

1 2.039 0.548 -0.323 0.367 1.0 1.054 -0.370 0.847
t value (477.54) (6.14) (-3.49) - - (10.12) (-3.66) -

2 1.623 0.0812 - 0.0812 1.0 0.265 - 0.265
t value (469.92) (32.90) - - - (58.99) - -

3 5.709 0.000011 - 0.000011 1.0 0.0882 - 0.0882
t value (1486.69) (15.10) - - - (35.43) - -

Initial log-likelihood -811,804.79 -811,804.79
Log-likelihood -7,041.67 -8,996.89

Likelihood ratio 0.991 0.989
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Note) Slopes of survival probabilities F̃1(y1) for condition state 1 along operation duration y1 drawn
for normal lighting and eased lighting.

Figure 3.2: Survival Probability F̃1(y1).

Table 3.4: Management Indicator.

Life expectancy Initial life expectancy
Condition state RMD(i) years RL(i) years

Weibull Markov Weibull Markov
1 1.45 1.23 1.45 1.27
2 4.20 3.77 5.65 5.00
3 7.30 11.34 12.95 16.34

Note) Multi-stage Weibull hazard model and multi-stage Markovian hazard model.

3.5 Summary and Recommendations

This chapter has presented an analytical methodology using the multi-stage Weibull

hazard model for forecasting the deterioration process of infrastructure facilities. The

deterioration process is represented by a transition pattern among multiple condition

states. In the estimation approach, the maximum likelihood method is employed to
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Note) The relation between operation duration s from initial time and deterioration state probability
πi(s) for normal lighting.

Figure 3.3: Deterioration State Probability πi(s).

Table 3.5: Life Expectancy and Corresponding Condition State RL3(h(sA) = i).

Condition state i i = 1 i = 2 i = 3
sA = 2 11.85 years 10.54 years 6.40 years
sA = 4 — 9.94 years 5.77 years
sA = 6 — 9.39 years 4.92 years
sA = 8 — 9.02 years 3.96 years
sA = 10 — — 3.15 years
sA = 12 — — 2.60 years

Note) Only elapsed time sA, which displays only the case of survival probability more than 10%.

estimate the parameters of the model based on observed condition states, characteristic

variables and elapsed time of disaggregate samples collected through inspections.

The proposed model makes it possible to estimate the transition probability of condition

states for any arbitrary time intervals. In order to verify the applicability of the model,

an empirical study was conducted on a database of tunnel lighting facilities of express

highways in Japan. This study has made a contribution to the field by benchmarking

findings with estimation results using the Multi-stage Markovian hazard model. The

analytical methodology presented can be extended to apply not only to tunnel lighting

facilities but to various other kinds of infrastructure facilities as well.

However, we have not discussed several points, which will be considered as topics for

extending this study in the future:

• Measurement errors occurring in monitoring and inspection activities have not

been addressed in this model. In order to tackle this problem, for example, a
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methodology using Bayesian estimation and Markov Chain Monte Carlo, for ex-

ample, can be incorporated into the model in the future.

• The samples used in empirical study shared almost similar structural character-

istics. However, in general practice, an infrastructure database system is often

comprised of heterogeneous groups. Thus, the impacts of individual groups on

the overall deterioration process should be investigated. A methodology using the

mixture mechanism in hazard analysis can be proposed for future consideration.

• In future management, a tendency might develop whereby shorter inspections will

become common due to innovations in technology. Hence, the database system

of infrastructure management should be designed in such a way that it can be

synchronized with an analytical frame. As a sequel, the future focus on multi-

schemes inspection data should be considered.



Chapter 4

A Hidden Markov Deterioration

Model with Measurement Errors

4.1 General introduction

Application of Markov hazard models requires monitoring data from at least two in-

spection times. Thus, the accuracy of estimation largely depends on the quality of

monitoring data. Errors exist in monitoring data are referred as measurement errors

arising from measurement system or inspector (human or machine), inspected objects,

or from data processing and data interpretation [19]. Measurement errors tend to cause

estimation results to be different from what they should be, especially under a small

pool of monitoring data.

This chapter proposes a hidden Markov deterioration model, with an innovative ana-

lytical method to eliminate the negative influence of measurement errors on estimation

results. In the model, measurement errors are assumed as random variables. In addition,

the functional relation between the “true condition states” and “measurement errors”

of an infrastructure component is formulated by a mixture mechanism. Precisely, the

mixing mechanism is referred as the dispersion of the “observed condition states” to the

“true condition states”. To estimate the parameters of the model, we apply the method

of maximum likelihood, together with the Bayesian estimation and MCMC simulation.

The following section presents a framework on measurement errors and the process of

deterioration with hidden condition states. Section 4.4 details the mathematical formu-

lation of mixture distribution and hidden Markov transition probability. An analytical

technique using Bayesian estimation and MCMC simulation is discussed in section 4.5.

Section 4.6 illustrates an empirical study using data of Japanese national road system.

59
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The last section summarizes contributions of the model and further includes a discussion

for future research.

4.2 Measurement errors and hidden condition states

4.2.1 Measurement errors and the problem of representative

values

In infrastructure management practices, the healthy status or performance of an infras-

tructure component is described in discrete condition states, which are defined by means

of a single performance index or an aggregate index. The values of indexes are measured

by monitoring and visual inspection. For example, in the case of pavement management

system (PMS), the condition states include the extend of several pavement distress such

as rut and cracking, or some aggregate condition states, such as the Pavement Condition

Index (PCI) [59].

However, because of measurement errors, the true condition states may not be captured.

Fig. 4.1 presents a problem of having measurement errors in the PMS. The values

on both horizontal and vertical axes indicate the rut index, which are measured at

inspection time τA and τB (τA < τB) respectively. If there is no maintenance and repair

(M&R) actions during the past inspection period (6 years), the dots representing the

values of ruts should be located above the 45o line. However, as can be seen from the

figure, a great numbers of dots are located under the 45o line, inferring measurement

errors. As a result, the observed condition states representing by the dots under the 45o

line might be used in the hazard analysis instead of using the true condition states. The

problem of representation of condition states is referred as the “representation matter”.

4.2.2 The process of deterioration in hidden Markov hazard

model

A clear picture of measurement errors can be seen from Fig. 4.2. In the figure, the

deterioration of a road section is described as the transition pattern among condition

states i (i = 1, ..., I), with i = 1 as the new condition state and i = I as the worst

condition state (absorbing condition state). Two visual inspections are supposed to be

carried at inspection times τA and τB. In addition, there is no M&R action during the

interval [τA, τB]. The observed condition state of the road section at inspection times



Chapter 4. A Hidden Markov Deterioration Model with Measurement Errors 61

¥¦§¨©§ª«¬¦§©§­® ¯©©°
±²³́µ¶·̧³¹º·¶·»́
¼¶¶½

¾ ¿¾ À¾ Á¾ Â¾ Ã¾ÄÅÄ
ÆÄÇÄ
ÈÄÉÄ

Note) Samples under the 450 line represent the values of the rut index for road sections.

Figure 4.1: Measurement errors in pavement management system.

τA and τB are m(τA) = m(m = 1, ..., I) and n(τA) = n(n = 1, ..., I)(m ≤ n) respectively.

However, because of measurement errors, the observed condition state is different from

the true condition state, which is supposed to be equal to m∗(τA) = i (i = 1, · · · , I) at

times τA and m∗(τB) = j (j = 1, · · · , I) at times τB.

In monitoring practices, to quantify the condition state of a road section, several values

of distress are examined. However, inspectors tend to select the worst condition state

among the observed condition states of distress to be the representative condition state

of that section. As can be seen from the Fig. 4.2, the “true condition state” m∗(τA) = i

at times τA is lower than the “observed condition state” m(τA) = m at times τB.

According to Humplick [19], measurement errors can be assigned as random variables.

With this assumption, the discrete probability distribution of observed condition state

m can be described by using likelihood function fi(m|αi). We can explain from the

function that the probability of the observed condition state m conditionally depends on

the true condition state i. In other words, it conditionally depends on the characteristic

parameter αi of the probability distribution of the true condition state i.

We further assume z as the duration between two consecutive inspection times τA and

τB. On the same road section, at inspection time τB, the observed condition states and

true condition states are supposed to be m(τB) = n and m∗(τB) = j respectively. Since

the process of deterioration progresses in an uncertain manner, there is no concrete

guarantee of having any correlation between the two condition states n and j.
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Note) Observed values of states for τA, τB are higher than the true condition state values due to

measurement errors.

Figure 4.2: Degree of Measurement Errors.

As for the transition pattern between the condition states in the period [τA, τB), it is

m→ n for the observed condition states and i→ j for the true condition states. In term

of Markov transition probability, however, we are able to estimate only the Markov tran-

sition probability πmn, while the Markov transition probability πij is hidden. Because

of the hidden characteristics, the hidden Markov model is then proposed, with its focus

on estimating the true Markov transition probability πij. Further to the meaning of the

likelihood function fi(m|αi), it can be described as a mixing part of the conventional

Markov transition probability (refer to Chapter 2). Thus, one of important roles of the

hidden Markov model is to estimate the condition probability distribution fi(m|αi).

4.3 Exponential Markov Deterioration Hazard Model

Reference is mainly made to section 2.3.3, in which, the exponential Markov Hazard

model has been extensively explained. For convenience of reading in subsequent parts

of this Chapter, following equation is given as the obtained results from section 2.3.3 in

Chapter 2:

πij(z) = Prob[m∗(τB) = j|m∗(τA) = i] =
k−1
∏

m=i,6=k

θm
θm − θk

exp(−θkz). (4.1)
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4.4 Hidden Markov hazard model

4.4.1 Mixture distribution mechanism

This section explains the mathematical formulation of the hidden Markov chain model

based on mixture distribution mechanism. Assumption is referred to section 4.2.2. In

fact, it is uncertain to use the probability distribution function fi(m|αi) (i = 1, · · · , I)

to estimate the true condition state i. However, we are able to express the probabilistic

dependence of the observed condition state m(τA) = m on the true condition state i by

means of the likelihood function fi(m|αi) (i = 1, · · · , I):

ℓ(m(τA) = m) =
I
∑

i=1

πi(τA)fi(m|αi). (4.2)

where πi(τA) is the probability of the true condition state i at inspection time τA. Equa-

tion (4.2) depicts the conditional probability distribution of the observed condition state

m(τA) = m on the true condition state i. In other words, it portrays the conditional

probability distribution of the observed condition state m(τA) = m by averaging the

distributed values of measurement errors over the range of the true condition states. A

model with mixing mechanism of measurement errors is referred as a mixture distribu-

tion model [65].

Similarly, the probability distribution of the observed condition states at inspection

time τB = τA + z (τA < τB) can be described by means of mixing form. The likelihood

function ℓ(m(τA) = m,m(τB) = n), to which the observed condition state m(τB) = n

at inspection time τB can be defined as

ℓi(m(τB) = n) =
I
∑

j=i

πij(z)fj(n|αj). (4.3)

As a matter of course, the likelihood distribution function of the observed condition

state ℓ(m(τB) = n) at inspection time τB conditionally depends on the probability πi(τA)

despise the fact that the true condition state i at inspection time τA is absolutely hidden.

Following equation details the conditional dependency in the likelihood function:

ℓ(m(τB) = n) =
I
∑

i=i

πi(τA)ℓi(m(τB) = n) =
I
∑

i=i

πi(τA)
I
∑

j=i

πij(z)fj(n|αj). (4.4)
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As a result, the likelihood function ℓ(m(τA) = m,m(τB) = n), at which we observe the

condition state m(τA) = m at inspection time τA and the condition state m(τB) = n at

inspection time τB, can be defined:

ℓ(m(τA) = m,m(τB) = n) =
I
∑

i=1

πi(τA)fi(m|αi)

(

I
∑

j=i

πij(z)fj(n|αj)

)

. (4.5)

It is noticed from equation (4.5) that the probability distribution functions fi(m|αi) and

fj(n|αj) are in strong correlation with each others through the Markovian transition

probability πij(z). In other words, the distribution of the observed condition state

depends on the hidden characteristics or measurement errors at respective inspection

time τA and τB.

4.4.2 Initial values of the condition states

As can be seen from equation (4.5), there are three unknown components, the ini-

tial distribution πi(τA), the probability distribution function fi(m|αi) and the Markov

transition probability πij(z). The value of the initial probability distribution πi(τA)

is regarded as a transcendental information. The initial probability distribution can

be assumed as a variable of non-parametric distribution. However, assuming it as a

non-parametric variable limits the study for a large number of monitoring data since

characteristic variables concerning a road section do not share the same values with the

other road sections. It is therefore advisable to determine the initial value of condition

state immediately after any M&R action. Because, by implementing M&R actions, the

condition state of a road section will become good again, with i = 1. For example, if a

M&R action is carried out just before time τ0, the initial probability distribution can

be defined as

π(τ0) = {π1(τ0), · · · , πI(τ0)} = (1, 0, · · · , 0). (4.6)

Evidently, the properties of the vector π(τ0) is measurable. Thus, if M&R actions are

implemented at alternative times τ1, · · · , τT , the initial value of probability distribution

πi(τA) can also be defined. To come up with a general likelihood function for the

conditional probability distribution of the observed condition states m, the observed

condition states after M&R actions at times τt (t = 1, ..., T ) are assumed as m(τt) = mt.

The durations between two consective M&R actions from t − 1 to t are denoted as

zt (t = 1, · · · , T ). As a result, likelihood function L(α,m,z), which describes the

conditional probability distribution of the observed condition states m = (m1, · · · ,mT ),
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can be recurrently defined:

L(α,m,z) =
I
∑

j=1

π1j(z1)fj(m1|αj)ℓj(1), (4.7)

ℓh(t) =
I
∑

j=h

πhj(zt)fj(mt|αj)ℓj(t+ 1) (1 ≤ t ≤ T − 1), (4.8)

ℓh(T ) =
I
∑

j=h

πhj(zT )fj(mT |αj). (4.9)

The maximum likelihood estimation method can be used to estimate the parameters of

the model by applying numerial analysis with the objective likelihood function. How-

ever, the method exerts to have its limitation as it requires a high order of derivative and

high degree of computation for solving the optimal condition of nonlinear polynomial

equations. Therefore, in view of problems in the hidden Markov model, the maximum

likelihood method is not deemed as an ultimate solution [54]. Attempts to overcome the

limitation of the maximum likelihood method by using Bayesian estimation have been

proposed.

4.4.3 Complete likelihood function

The distribution of measurement errors is assumed by means of a hidden variable s =

(s0, · · · , sT ). If there is no M&R action in the inspection period, the following condition

is satisfied:

s0 = 1 ≤ s1 ≤ · · · ≤ sT ≤ I. (4.10)

Furthermore, if the hidden variable is measureable, its value can be used to update

the probability distribution of the true condition state i, which is hidden because of

measurement errors. In addition, to identify the possibility of actual measurement of

the hidden variable, a dummy variable δ is assigned with the conditions as follows:

δti =

{

1 st = i

0 st 6= i
, (t = 1, · · · , T ; i = 1, · · · , I). (4.11)
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With this assumption and according to Dempster et al. [66], the likelihood functions

(4.7)-(4.9) are then described as follows:

L̃(s,α,m,z) =
I
∏

i=1

{

π1i(z1)
δ1ifi(m1|αi)

δ1i

T
∏

t=2

I
∏

j=i

πij(zt)
δt−1iδtjfj(mt|αj)

δtj
}

=
T
∏

t=1

{

πst−1st
(zt)fst

(mt|αst
)
}

=
T
∏

t=1

πst−1st
(zt)

T
∏

t=1

fst
(mt|αst

). (4.12)

Equation (4.12) is referred as a complete likelihood equation [67], with a better explicit

form than that in the likelihood equations (4.7)-(4.9). Nevertheless, a difficulty remains

at this point is how to assign a realistic value for the hidden variable s since it is

unobservable. In view of probability distribution, the hidden variable s can be derived

by applying the full conditional posterior distribution in Bayesian inference. In which,

the prior probability distribution in Bayesian estimation is assumed as follows:

Prob{st = i|s−t,α, ξ} =
L̃(si−t,α,m,z)

∑st+1

i=st−1
L̃(si−t,α,m,z)

=
ωitfi(mt|αi)

∑st+1

j=st−1
ωjtfj(mt|αj)

, (4.13)

where s−t = (s1, · · · , st−1, st+1, · · · , sT ), si−t = (s1,· · · ,st−1, i, st+1, · · · , sT ), and st = i (i

∈ {st−1,· · · , st+1}). In addition, ωjt satisfies

ωjt =















π1jπjs2 t = 1

πst−1jπjst+1 2 ≤ t ≤ T

πsT−1j t = T

. (4.14)

It is clear at this point that if the posterior probability distribution of the hidden variable

st ∈ {st−1, · · · , st+1} at time t is measurable, the transition probability πij(z) (i =

1, · · · , I; j = i, · · · , I) and the probability distribution function fi(m|αi) (i = 1, · · · , I)

can be ultimately estimated. It is also noted that the posterior probability distribution

of the hidden variable st ∈ {st−1, · · · , st+1} is conditionally depended on the observed

value of s−t.

To solve the likelihood equation (4.12), it is required to estimate the value of hidden

variable s. As a result, the main task is to estimate the unknown parameters α and

β, which are embedded in the transition probability functions. In fact, there is no

possibility to seek for the posterior distribution of all hidden variables. Thus, MCMC

simulation is recommended to use in randomly generating the hidden variable s.
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4.4.4 Conditional distribution of measurement errors

As earlier mentioned in section 4.2, the representative condition state of a road sec-

tion generally happens to be the worst condition state among several condition states

observed on the same section. Thus, it is possible to assume the range of observed

condition state m in a domain m(m = 1, ..., i). The relationship between the observed

condition state m and the true condition state i implies measurement errors on the

same road section. Suffice it to say that the selection of the observed condition state

can be considered as a random selection process. However, probabilistic inference on the

value of probability distribution function fi(m|αi) (m = 1, · · · , i) faces some degrees of

difficulty. In this research, the distribution probability function fi(m|αi) (m = 1, · · · , i)

is assigned to satisfy the following conditions:

fi(m|αi) =

{

0 when m > i

αim when m ≤ i
, (4.15)

where parameter αim is assumed as a non-parametric constant satisfying

0 ≤ αim ≤ 1, (4.16)
i
∑

m=1

αim = 1. (4.17)

The probability distribution of parameter αim can be estimated if having enough num-

bers of monitoring data. This is a non-parametric approach in case of receiving no

prior information regarding measurement errors. This approach has been applied in the

research on the probabilistic measurement of system errors [68, 69].

4.5 Estimation methodology

4.5.1 Markov Chain Monte Carlo method

In statistic with Bayesian inference, the prior and posterior probability are employed

with aim to estimate the values of model’s parameters [31]. However, in hazard anal-

ysis, it is hard to define the prior probability distribution, even in a simple condition

states hazard model [70]. Methods to overcome the problems in the assumption of the

prior probability distribution often require numerical analyses with multi-dimensional

integration, and thus remain as a limitation in Bayesian estimation.
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In recent years, an appealing solution to the problem in Bayesian estimation has been

proposed, with the application of MCMC simulation. The MCMC simulation technique

does not require a high level of derivative and multi-dimensional integration of model’s

objective functions [31]. As a result, estimation results in a great deal of applied statistic

research have been improved through a combination of the Bayesian estimation and

MCMC simulation.

In MCMC simulation, Gibbs sampling and Metropolis Hastings (Metropolis-Hastings or

MH) techniques have been extensively discussed [31]. Reference to the research on image

restoration is a good example of MCMC simulation [57]. Of that study, the algorithm of

Gibbs sampling was used to estimate the posterior distribution in Bayesian estimation

[58]. In MH law, the iterative parameter β is defined by repeatedly generating random

numbers through the conditional probability density function. In this research, we

propose an extended estimation methodology to estimate the parameters of the hidden

Markov model based on the literature of the Bayesian estimation for the Weibull hazard

model of Tsuda et al. [71].

Further to the estimation parameters in hidden Markov models, analytical approach

using the method of maximum likelihood has already exhibited its limitation [54, 55].

Since hidden Markov model is considered as one type of mixture distribution model, a

great deal of research suggested to define a set of complete likelihood functions instead

of using conventional likelihood functions [27, 65]. In view of MCMC simulation, it is

necessary to develop an explicit algorithm for estimating the Markov transition proba-

bility with multi-condition states. In this research, we propose an analytical approach

using Bayesian estimation and MCMC simulation for estimating the Markov transition

probability of the conventional exponential hazard model, which is briefly presented in

Chapter 2.

4.5.2 Formulation of the model

Visual inspection is carried out on each section k of the entire road system (with K is

the total number of road sections). The observed data on each section over a time-series

can be denoted as τ kt (t = 1, · · · , T k), with T k as the number of inspection times for the

road section k. Each observed condition state from the visual inspection is represented

as m̄(τ kt ), with the sign ¯ indicating the measurable data. ξ̄ = (ξ̄
1
, · · · , ξ̄

K
) is denoted

as the vector of measureable data concerning
∑K

k=1 T
k numbers of records.

The deterioration process of a road section is influenced by the changes in the values of

characteristic variables such as traffic volume, thickness of overlay, weather, etc. The
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values of characteristic variables are recorded and stored in monitoring data. To con-

sider the effects of characteristic variables on the deterioration, vector x̄kt is assumed to

represent for characteristic variables. In addition, the duration between two consecutive

visual inspections is defined as z̄kt = τ kt − τ kt−1. In summary, the observed informa-

tion concerning each section of a road can be symbolized as ξ̄
k
t = (m̄k

t , z̄
k
t , x̄

k
t ), with

m(τ kt ) = m̄k
t . As a result, the simultaneous probability distribution for the entire K

samples can be defined:

L̃(α, s,β, ξ̄) =
K
∏

k=1

{

Tk
∏

t=1

πsk
t−1s

k
t
(z̄kt )

Tk
∏

t=1

fsk
t
(m̄k

t |αsk
t
)
}

=
K
∏

k=1

[

Tk
∏

t=1

α
sk
t

m̄k
t

sk
t
∑

l=sk
t−1

{

l−1
∏

i=sk
t−1,6=l

θki
θki − θkl

exp(−θkl z̄
k
t )
}]

, (4.18)

In likelihood equation (4.18), the hazard function is described by using exponential form

as θki = exp(xkβ′
i). In order to estimate the unknown parameters and the hidden vari-

ables (measurement errors), the method using to solve the likelihood functions (4.7)-(4.9)

should be considered. By solving equation (4.18), the values of α = (α1, · · · ,αI−1),

β = (β1, · · · ,βI−1) and hidden variable s = (s1, · · · , sK) can be obtained. If pa-

rameter vectors α and β are known, the posterior distribution of the hidden vari-

able skt (t = 1, · · · , T k; k = 1, · · · , K) can be estimated as well. Given the condition

sk−t = (sk1, · · · , s
k
t−1, s

k
t+1, · · · , s

k
Tk), the conditional probability, to which the hidden vari-

able skt (skt ∈ {skt−1, · · · , s
k
t+1}) equals to the true condition state i , is finally estimated:

Prob{skt = i|sk−t,α, ξ} =
ωkitfi(m

k
t |αi)

∑sk
t+1

j=sk
t−1

ωkjtfj(m
k
t |αj)

, (4.19)

where

ωkjt =















π1jπjs2 t = 1

πsk
t−1j

πjsk
t+1

2 ≤ t ≤ T k

πsk

Tk
−1
j t = T k

. (4.20)

4.5.3 Bayesian estimation

As a common practice in Bayesian estimation, the assumption for the prior probability

distribution of parameters α and β is based on various sources of prior experience

information. Any new information concerning monitoring data ξ shall be directly used

for estimation of the likelihood function L(α, β, ξ̄). The updating rule in Bayesian

estimation constantly improves the level of accuracy for prior probability distribution of
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the parameters. By using the most up-to-date monitoring data, the parameters α and

β specifying the probability density function ρ(α,β|ξ) can be simultaneously obtained.

However, according to Ibrahim and Sinha [70], just only a single time of assuming the

prior probability density function cannot guarantee the accuracy of estimation results

since the prior probability density function can be assumed in various ways. Thus, it

is advisable to define the prior probability density function along with the continuity

of visual inspections. As a rule of thumb, the influence of the prior probability density

function will gradually decreases as the number of monitoring data increases.

As earlier mentioned in section 4.4.4, the constant parameter αi = (αi1, · · · , α
i
i) in

equation (4.15) is assumed to satisfying the conditions in equations (4.16) and (4.17). On

that account, we introduce the conjugate Dirichlet distribution for the prior probability

density function of the constant αi:

ηi(αi|ν
i) = Ψi(ν

i)
i
∏

m=1

(αim)ν
i
m−1, (4.21)

Ψi(ν
i) =

Γ(νi1 + · · · + νii)

Γ(νi1) · · ·Γ(νii)
and

i
∑

m=1

αim = 1.

It is noted that the Direclet distribution infers a constant parameter νi = (νi1, · · · , ν
i
i),

which is spontaneously satisfying the constant parameter αi in equations (4.16) and

(4.17).

Assumption for the prior probability density function of parameter βi can be defined in

the next step. The conjugate multidimensional normal distribution βi ∼ NM(ζi,Σi) is

assumed for the prior probability density function in M dimension:

h(βi|ζi,Σi) =
1

(2π)
M
2

√

|Σi|
· exp

{

−
1

2
(βi − ζi)Σi

−1(βi − ζi)
′
}

, (4.22)

where Σi of NM(ζi,Σi) and ζi are the covariance matrix and the standard covariance of

the prior distribution respectively. As a result, a proportional result of the probability
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density function ρ(α,β|s, ξ) can be re-formulated:

ρ(α,β|s, ξ) ∝ L̃(α,β, s, ξ)
I−1
∏

i=1

{

h(βi|µi,Σi)ηi(αi|ν
i)
}

∝
K
∏

k=1





Tk
∏

t=1

sk
t
∑

l=sk
t−1

{

l−1
∏

i=sk
t−1,6=l

θki
θki − θkl

exp(−θkl z
k
t )
}

·

I−1
∏

i=1

exp
{

−
1

2
(βi − ζi)Σi

−1(βi − ζi)
′
}

·





Tk
∏

t=1

α
sk
t

m̄k
t





(

I
∏

i=1

i
∏

m=1

(αim)ν
i
m−1

)



 . (4.23)

4.5.4 Gibbs sampling

As the matter of fact, a direct estimation for the probability density function ρ(α,β|ξ)

in hidden Markov deterioration hazard model is impracticable. By using the MCMC

simulation, specimens of the parameters α and β can be alternately extracted from the

probability density function [57]. In equation (4.23), the parameters α and β can be

mutually used to express the probability density function. Approximation of ρ(α|s, ξ)

and ρ(β|s, ξ) can be further described as follows:

ρ(α|s, ξ) ∝
(

K
∏

k=1

Tk
∏

t=1

α
sk
t

m̄k
t

){

I
∏

i=1

i
∏

m=1

(αim)ν
i
m−1
}

, (4.24)

ρ(β|s, ξ) ∝
{

K
∏

k=1

[

Tk
∏

t=1

sk
t
∑

l=sk
t−1

[

l−1
∏

i=sk
t−1,6=l

θki
θki − θkl

exp(−θkl z
k
t )
]}

.

I−1
∏

i=1

exp
{

−
1

2
(βi − ζi)Σi

−1(βi − ζi)
′
}

. (4.25)

The conditional posterior distribution of the hidden variable s can be expressed in

equation (4.19). A detailed procedure of the analytical approach using the Bayesian

estimation and the MCMC simulation is drawn in Figure. 4.3. To explain the flow of

algorithm in the figure, a detail of procedure is given in the subsequent writing of this

section.

4.5.4.1 Step 1: Initial parameter values

Parameter vectors νi (i = 1, · · · , I), ζi, and Σi (i = 1, · · · , I−1) of the prior probability

distribution in equations (4.21) and (4.22) have an arbitrarily set of values. The value



Chapter 4. A Hidden Markov Deterioration Model with Measurement Errors 72åæçè éê ëìèíæ îï ðìðæðñò óñòíçô õö÷öøùúù÷ öûûüøýúþÿ��ô�üø�ù÷ ÿ� ûöøý�ùû�ô�þ��ù� �ö÷þö��ù�ô õö÷öøùúù÷ ÿ� ý÷þÿ÷ �þûú÷þ�üúþÿ� � 	
 � 	
 ��
 ��� � 	
�� � �� � � �� � �� �� � �åæçè �ê ëìèíæ îï ðìðæðñò óñòíç 	 ��
�� �������� !" #$% &'$()�*	 +�, �-. / � 0�12� 3(� #4�5��� !" #$% &'$(6�7� 89:�;<#"� != ;�#>?@AB�#> 7C#;
åæçè Dê åñEèòðìF îï 	 ����� G#"#5��#; #$% &'$(H�	 � 	 +� 	 +�++ ++I J K � � L� � ��M � � N/ // 	 �++���� G#"#5��#; #$% &'$(H�	 � 	 +� 	 +�+O +OI J K � � L� � ��M � � N/ // 	 �+O���� G#"#5��#; #$% &'$(H�	 � 	 +� 	 +�+* 	 +* �I J K � � L� � �P Q P Q �M � � N/ // / / 	 �+*�P Q� /åæçè Rê åñEèòðìF îï�� �! S# ;#�#��#9 #$% &'$(T�7� 89:�;<#"� != ;�#>U@VB�#> WC#;

	 ���*X �Y� J Z� [[[� LX\ ]^
_! U@U`a

åæçè bê còFîdðæeE ñfgíhæEçìæi���# �! S# 5#�!59#9	 ��� j"9C#;_!

_! ?@?`a

k@k`a � �l

��1�m

Figure 4.3: Flowchart of Bayesian Estimation for Hidden Markov Model
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of the hidden variable s(0) = (s(1,0), · · · , s(K,0)) is initially chosen so as to satisfying

s(k,0) = (sk,01 , · · · , sk,0T ), 1 ≤ sk,01 ≤ · · · ≤ sk,0T ≤ I, and mk
t ≤ sk,0t (t = 1, · · · , T ; k =

1, · · · , K). The influence of the initial values α(0) and β(0) gradually becomes weaker as

more information generated by MCMC simulation is accumulated. To begin with the

iteration, a sampling number n in MCMC simulation is assigned as n = 1.

4.5.4.2 Step 2: Sampling of the parameter α(n)

This section describes the estimation of α(n) = (α
(n)
1 , · · · ,α(n)

I−1) based on the prior

hidden variable s(n−1). The probability density function ρ(α(n)|s(n−1), ξ) in equation

(4.24) can be re-written, with an extended description α
(n)
i = (αi,nm : m = 1, · · · , i):

ρ̃(α
(n)
i |s(n−1), ξ) ∝







K
∏

k=1

Tk
∏

t=1

α
s
k,(n−1)
t

m̄k
t







{

i
∏

m=1

(αi,nm )ν
i
m−1

}

=
i
∏

m=1

(αi,nm )ν
i
m+N

i,(n−1)
m −1, (4.26)

where N
i,(n−1)
m is defined in the following equation, particularly when the values of the

condition state m̄ and the hidden variable s(n−1) are available:

N i,(n−1)
m = #

{

m̄k
t = m ∩ sk,(n−1)

t = i
}

. (4.27)

The indication #{} in equation (4.27) presents the number of measurable samples, to

which the equation in the parentheses {} is referred. The parameter α in equation (4.26)

is assumed to follow the Dirichlet distribution, with its parameter as νim + N
i,(n−1)
m −

1. The parameters of the Dirichlet distribution is subsequently updated by using the

extracted samples α
(n)
i = (α

i,(n)
1 , · · · , αi,(n)

i ) through Gibbs sampling. It is noted that

the samples of the parameter α
(n)
i are evaluated from the entire range of the condition

state i(i = 1, ..., I).

4.5.4.3 Step 3: Sampling of the parameter β(n)

This section describes an algorithm for estimating the unknown parameter β of the

multi-stage exponential hazard model (See the Appendix). Additional notation of the

unknown parameter is β−eq. It is noticed from the notation that the element βeq

(e, q) (e, q = 1, · · · ,M) is excluded from the list of the unknown parameter β. Thus,

we formulated the conditional probability density function ρ(βeq|β−eq, s, ξ) of βeq based
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on the assumed value of β−eq in equation (4.25):

ρ̂(βeq|β−eq, s, ξ) ∝
e
∏

i=1

I
∏

j=e

K
∏

k=1

Tk
∏

t=1

{

j−1
∏

l=i

(θkl )
δtk
ij −δ

tk
ie

j
∑

h=i

·
h−1
∏

l=i,6=h

1

θkl − θkh
exp(−θkhz

k
t )
}δtk

ij

·
I−1
∏

i=1

exp
{

−
1

2
(βi − ζi)Σi

−1(βi − ζi)
′
}]

∝
e
∏

i=1

I
∏

j=e

K
∏

k=1

Tk
∏

t=1

[

j−1
∏

l=i

{exp(βeqx
k
q)}

δtk
ij −δ

tk
ie

j
∑

h=i

h−1
∏

l=i,6=h

1

θkl − θkh
exp(−θkhz

k
t )
]δtk

ij

exp
{

−
σqqe
2

(βeq − ζ̂qe )
2
}

.

ζ̂qe = ζqe +
M
∑

h=1,6=q

(βeh − ζhe )σhqe , (4.28)

where δtkie and δtkij are dummy variables:

δtkie =

{

1 when skt−1 = i = e

0 otherwise
and δtkij =

{

1 when skt−1 = i, skt = j

0 otherwise
,

ζqe and σhqe are the prior expected values of the vector ζe and the prior standard co-

variance of entire procession Σe
−1 with respect to condition state q and (h, q). In

addition,
∑M

h=1,6=q is the summation of all condition states from
∑M

h=1,6=q, excluding the

condition state q. The expected condition state is generated by using the conditional

probability density functions. By using the generated condition states, we can come

up with the posterior distribution of the parameter β. A detailed MCMC simulation

for estimating the posterior distribution is further presented in the subsequent writ-

ing. However, to this point, a summation of the random sampling procedure for the

parameter β(n) = (β
(n)
11 , · · · , β

(n)
I−1M) is presented as follows:

• Step 3.1 - value of parameter β
(n)
11 is randomly generated from ρ̂(β

(n)
11 |β(n−1)

−11 ,

s(n−1), ξ).

• Step 3.2 - value of parameter β
(n)
12 is randomly generated from ρ̂(β

(n)
12 |β(n−1)

−12 ,

s(n−1), ξ).

• Step 3.3 - similar procedure in step 3.1 and step 3.2 is repeated.

• Step 3.4 - value of parameter β
(n)
I−1M is randomly generated from ρ̂(β

(n)
I−1,M |

β
(n−1)
−(I−1M), s

(n−1), ξ).

Gibbs sampling is applied to generate the condition states from (I − 1)M conditional

posterior probability density functions. The so-called “adaptive sampling rejection”
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[72] is used as a technique to generate the specimens of the parameter in the posterior

distribution, which is explained in equation (4.28).

4.5.4.4 Step 4: Updating the hidden variable

Given the prior value of the hidden variable s
k,(n−1)
−t = (sk,n1 , · · · , sk,nt−1, s

k,(n−1)
t+1 , · · · , sk,(n−1)

Tk ),

a new hidden variable s(n) is randomly selected based on the conditional probability law

in equation (4.19). Random generation applies for all condition states sk,nt (sk,nt ∈

{sk,nt−1, · · · , s
k,(n−1)
t+1 }). Thus, we can come up with the conditional probability for the

hidden variable sk,nt (sk,nt ∈ {sk,nt−1, · · · , s
k,(n−1)
t+1 }):

Prob{skt = i|α, sk,(n−1)
−t , ξ} =



































ω
k,(n−1)
it fi(m

k
t |α

(n)
i )

∑s
k,(n−1)
2

j=1 ω
k,(n−1)
jt fj(mk

t |α
(n)
j )

(at t = 1)
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where
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The hidden variable sk,nt (t = 1, · · · , T k) is estimated one after the other, starting from

t = 1 for all number of the sample k (k = 1, · · · , K).

4.5.4.5 Step 5: Determining algorithm adjustment

After step 4.5.4.4, value of the parameters α(n), β(n) and the hidden variable s(n) are

recorded. At the iteration n = n + 1, the program returns to the step 4.5.4.2. If the

algorithm satisfies n ≤ n, the program will terminate.

A major concern is the number of the condition state n generated by the program. The

number should be carefully examined. In several cases, the steady condition states could

not be reached even though a large number of condition states had been accumulated.

It is therefore desirable to eliminate the problem by introducing a minimum set of

the parameter value as n. In fact, values of the parameters α(n) and β(n) (n = n +

1, n + 2, · · · , n) are embedded in the posterior probability density function ρ(α,β|ξ)
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through the Gibbs sampling. As a result, the estimation for the posterior distribution

of the parameters α,β becomes analytical feasible. To verify the estimation results, we

applied the Geweke statistical test.

4.5.5 Posterior distribution statistic

Statistical testing for the parameter α and β can be carried out based on the samples

generated by using the MCMC simulation. However, in the simulation, the probability

density function ρ(α,β|ξ) cannot be considered as an analytical function. Therefore,

instead of using the full parametric approach for statistical testing, non-parametric

approach is recommended. From the Gibbs sampling, the samples concerning θ(n) =

(α(n),β(n)) (n = 1, · · · , n) are generated. Among the generated samples, the first n

samples will be removed. A new set of samples will then be defined as a replacement,

with its subcriptions as M = {n + 1, · · · , n). By applying this approach, the joint

probability distribution functions G(α) and G(β) can be defined:

G(α) =
#(α(n) ≤ α, n ∈ M)

n− n
, (4.31)

G(β) =
#(β(n) ≤ β, n ∈ M)

n− n
, (4.32)

where #(β(n) ≤ β, n ∈ M) is regarded as the total number of samples, from which the

logical expression β(n) ≤ β, n ∈ M is satisfied. Moreover, the expected values of the

posterior distribution of ζ̃i(βi) and standard covariance Σ̃i(βi) are defined respectively

as follows:

ζ̃i(βi) = (ζ̃(βi,1), · · · , ζ̃(βi,M))′ =
(

n
∑

n=n+1

β
(n)
i,1

n− n
, · · · ,

n
∑

n=n+1

β
(n)
i,M

n− n

)′

, (4.33)

Σ̃i(βi) =








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...

. . .
...
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, (4.34)

where

σ̃2(βi,m) =
n
∑

n=n+1

{β(n)
i,m − ζ̃(βi,m)}2

n− n
, (4.35)

σ̃(βi,mβi,l) =
n
∑

n=n+1

{β(n)
i,m − ζ̃(βi,m)}{β(n)

i,l − ζ̃(βi,l)}

n− n
.
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The confidence interval of the parameter α and β are examined and determined by

using the samples generated from Gibbs sampling. For example, the 100(1 − 2ε)%

confidence interval of the parameter β is defined by using statistical sampling order

(βε
i,m
, β

ε

i,m) (i = 1, · · · , I − 1, m = 1, · · · ,M) with βε
i,m

< βi,m < β
ε

i,m:

βε
i,m

= arg max
β∗

i,m

{

#(β
(n)
i,m ≤ β∗

i,m, n ∈ M)

n− n
≤ ε

}

, (4.36)

β
ε

i,m = arg min
β∗∗

i,m

{

#(β
(n)
i,m ≥ β∗∗

i,m, n ∈ M)

n− n
≤ ε

}

. (4.37)

It is noted that the initial value of the parameter θ(0) does not guarantee to have the

true condition states neither for prior distribution and posterior distribution in MCMC

simulation. Thus, it is necessary to consider n samples generated by Gibbs sampling as

the posterior distribution of the first n set θ(n) = (α(n),β(n)) (n = 1, · · · , n). When the

number of samples increases to be n+1, a hypothetical test using the Geweke statistical

test is performed to verify whether the samples coming from the prior or the posterior

distribution [73]. In the next step, the sampling distribution θ(n) (n = 1, · · · , n) is

divided into two subsets n1 and n2. In the Geweke statistical test, the ranges of the two

subsets are recommended as n1 = 0.1(n− underkinen) and n2 = 0.5(n− underkinen)

respectively [73]. According to Chib [74], Newey and West [75], the Geweke statistical

test used to verify the value of the parameter α can be outlined as follows:

Zαi
m

=
1ᾱ

i
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i
m

√
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i
m) + ν2

2(α
i
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where f lαi
m
(x) (l = 1, 2) is the probability density function and the value of 2πf lαi

m
(0) is

estimated from the following equations:

2πf̂ lαi
m
(0) = lω̂0 + 2

q
∑

s=1

w(s, q)lω̂
i
m, (4.39)

1ω̂0 = n−1
1

n+n1
∑

g=n+1

(αi,gm − 1ᾱ
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i
m)(αi,(g−s)m − 1ᾱ
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i
m),

w(s, q) = 1 −
s

q + 1
.

The value of coefficient q, which represents for the approximate value of the spectrum

density, should equals to 20 as recommended in the practice of the Geweke statistical test

[73]. In a similar approach, a statistical testing for the parameter βi,m (i,m = 1, · · · ,M)

using the Geweke statistical test can also be performed:

Zβi,m
=

1β̄i,m − 2β̄i,m
√
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∼ N (0, 1), (4.40)
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.

In this test, the null hypothesis H0 and the alternative hypothesis αim concerning the

invariance distribution of the setting-values for the parameter αim can be defined as

{

H0 : |Zαi
m
| ≤ zψ/2

H1 : |Zαi
m
| > zψ/2

, (4.41)

where zψ/2 is the critical value to be applied for rejecting the null hypothesis. If the

given hypothesis is accepted, the null hypothesis can be defined by a significant level

ψ%, to which the condition zψ/2 ψ/2% = 1−Φ(zψ/2) is satisfied. Φ(z) is the distribution

function of the standard normal distribution. As for the hypothetical testing for the

distribution of the parameter βi,m (i,m = 1, · · · ,M), a similar approach can be applied.
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4.6 Empirical application

4.6.1 Overview

In the empirical analysis, we present the applicability of the hidden Markov model to

estimate the Markov transition probabilities. In addition, we compare the obtained

estimation results with the Markov transition probabilities obtained by using the multi-

state exponential Markov model on the same source of the monitoring data. We use the

monitoring data of the National road system of Japan. The monitoring data consists of

values of various structural and performance indexes such as Elastic modulus, Thickness

of pavement structures, Roughness, Flatness, Cracking, Rut, Annual traffic volume,

etc. The monitoring data has been collected since the year 1986, when the advanced

monitoring and inspection technologies were introduced, using high-speed inspection

cars. After a rigorous verification of the monitoring data, we select the monitoring data

in the period from 1998 to 2005. The total number of road sections are 5, 261, with 100

meters for average length of each section.

In order to define the most appropriate discrete numbers of the condition states, we

apply sensitivity analysis. The sensitivity analysis is substantial to verify the range of

the condition states. Because, the condition states can be assumed in various discrete

domains based on the actual values of performance indexes. In fact, the values of

performance indexes are measured and recorded in a small scale of their units. Based

on the results of the sensitivity analysis, It is found that that the arrival times to the

worst condition state are almost identical regardless of the differences in the ranges of

the conditions states. Thus, for the best interest of the numerical computation, we select

the range of the conditions states from 1 to 5, with its description given in the table

4.1. Moreover, to illustrate measurement errors, which might exist in the database, we

summary the numbers of samples in the table 4.2. The numbers in the rows of the table

reflects the numbers of condition state i observed at the first inspection time (referred

as pre-condition state). While, the numbers in the columns represents the numbers

of condition state j observed at the second inspection time (referred as post-condition

state). If there is no M&R action in the inspection interval, the actual value of condition

state j should be always greater than that of condition state i. However, as can be seen

from the table, the numbers of the post-condition states with better condition state

than the pre-condition states have been recorded, especially with condition state 1 and

2. Thus, it is implied that the monitoring data includs measurement errors.
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Table 4.1: Description of Condition States.

Condition states Range of rut values

1 < 5 mm
2 5 mm < () < 10 mm
3 10mm < () < 15 mm
4 15mm < () < 20 mm
5 > 20 mm

Table 4.2: Number of Samples.

Pre- Post-condition state
Condition states 1 2 3 4 5

1 331 339 32 5 0
2 573 1919 468 187 47
3 66 240 382 163 44
4 50 63 52 82 67
5 2 22 16 27 84

4.6.2 Estimation results

In the empirical study, the annual traffic volume of large-size car is considered as a main

characteristic variable, which effected the deterioration or the hazard rate in equation

(2.30). Other characteristic variables such as structural thickness is excluded since the

thickness of road sections are uniform in the national construction and design standard.

Denotation for the maximum traffic volume is xi2, which is observable. Whilst, the first

characteristic variable xi1 equals to 1 as a constant value.

The estimation results from applying the hidden Markov model with MCMC simulation

are displayed in table 4.3. It is highlighted from the table that the traffic volume exerts

its strong influence on the deterioration, especially for the first two condition states. The

values appeared in the blankets show the lower bound and upper bound of the confidence

interval corresponding to 95% of significant level estimated from equations (4.36) and

(4.37). Because of having non-negative values in the blankets, value of the parameter

cannot equal to 0 with respect to 95% confident level. In addition, the values of Geweke

statistical test for the unknown parameter are also presented in the last line of each row

in table 4.3. In the Geweke statistical test, to begin with, 2000 samples are selected

and then replaced by 10, 000 generated samples. The values of Geweke statistical test

for the unknown parameter are below 1.96 as shown in table 4.3. Hence, there is a high

possibility that the hypothesis “the parameter sampling process by MCMC simulation

converges to stationary state” cannot be dismissed by 5% of the significant interval.
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Table 4.3: Estimation Results of Hidden Markov Model.

Condition states Constant term Traffic Volume (TV)
βi1 βi2

1 0.280 0.415
(0.267,0.292) (0.352,0.477)

1.915 1.154

2 0.033 0.188
(0.029,0.035) (0.172,0.206)

0.543 1.128

3 0.108 -
(0.100,0.117) -

1.199 -

4 0.112 -
(0.101,0.121) -

0.753 -

Note) The values in the blankets show lower and upper bound values of 95% confident
interval. The third values in each row are obtained from Geweke statistical test.
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Figure 4.4: Distribution of Condition State.

Fig. 4.4 demonstrates the estimation results for measurement errors concerning param-

eter α. It presents the probability distribution of the function fi(m|αi), which reflects

the variation between the observed condition states and the true condition states. Two

important conclusions can be drawn from the figure: 1) when the condition state is

i = 1, measurement errors occur in small scale, 2) when the condition states are 4 and

5, measurement errors occur in large scale, deeming a high risk in management.

Based on equations (2.30) and (2.31), the values of the hazard rate and the life ex-

pectancy of condition state i can be estimated. The results of estimation are presented

in table 4.4. It is highlighted from the table that the life expectancy of condition state

i = 1 is less than 3 years before entering condition state i = 2. The average life
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Table 4.4: Life Expectancy of Condition States.

Condition states E[θil] E[RMDk
il](year)

1 0.362 2.762
2 0.070 14.286
3 0.107 9.346
4 0.112 8.929

Note) The values of the hazard rate and the life expectancy are not defined for the
absorbing condition state (i = 5) in the Markov chain model.

Table 4.5: Markov transition probability - by hidden Markov model.

Condition Condition states
States 1 2 3 4 5

1 0.696 0.293 0.011 0.000 0.000
2 0.0 0.932 0.064 0.003 0.000
3 0.0 0.0 0.898 0.096 0.006
4 0.0 0.0 0.0 0.894 0.106
5 0.0 0.0 0.0 0.0 1.0

Note) Interval of transition is one year.
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Figure 4.5: Deterioration curves - traffic volume comparision.

expectancy of other condition states are from 10 to 15 years. Table 4.5 presents the

Markov transition probability matrix, which is estimated by using the hidden Markov

model. The properties of the matrix are estimated based on the average hazard rates,

which represent the deterioration process of the entire road sections. To compare the

impact of traffic volume (TV) on the deterioration process, we categorize the traffic vol-

ume into 3 cases and estimated the hazard rates for respective cases. The benchmark

case (BM case) refers to a case with use of annual average traffic volume. Whilst, an-

other two cases considered the minimum traffic volumes and maximum traffic volumes

respectively. Comparative results of three cases are presented in Figure 4.5.
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An appealing conclusion from Fig.4.5 is that the traffic volume has a high impact on

the deterioration process of the road. A sharp decrease in the deterioration curve is

observed with the case of maximum traffic volume. In addition, there happen a long

delay of the transition from condition state 2 to condition state 3 for all three cases. The

deterioration curve of the maximum traffic volume case shows a short life expectancy of

condition state 2. In contrary, the life expectancy of condition state 2 of the minimum

traffic volume case is about 30 years. The life expectancies of condition state 3 and 4

have a similar duration.

4.6.3 Measurement errors and estimation bias

To understand the effects of measurement errors on the estimation results, we further

examine the estimation of the hidden Markov hazard model on three different databases

extracted from the same source of the monitoring data, which is also used in the esti-

mation of the exponential Markov hazard model. The first database (or filtered DB)

does not include the samples, which are represented by the dots under the 45o line in

figure 4.1. The second database (corrected DB) is selected based on the first database,

with correction of all condition states in the second inspection time appeared to have

their values better than that of the first inspection time. The condition states are as-

sumed equal to the condition states of the first inspection time. The third database

(reproduced DB) is generated database by using the MCMC simulation, with use of the

estimation results in the table 4.3.

A comparative estimation result of the three cases is presented in table 4.6. The values

of the parameters under the filtered DB and corrected DB cases are obtained by using

the exponential Markov hazard model, whilst, the hidden Markov model is used for

estimation with the reproduced DB. The average hazard rates E[θil] of three cases are

shown in table 4.7.

A comparison between estimation results of table 4.4 and table 4.7 revealed that the

average hazard rate of the condition state 1 in the case of using exponential Markov

hazard model is lower than that in the case of using the hidden Markov hazard model.

On the other hand, the average hazard rates of the condition state 3 and 4 are higher

in the case of using the exponential Markov hazard model. This findings lead to a

conclusion that the over-evaluation on the hazard rates of the condition states 3 and

4 are happened in the case of using the filtered DB and the corrected DB. Additional

evidence can be realized from looking at the tails of the deterioration curves in the Fig.

4.6.
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Table 4.6: Estimation results for unknown parameters.
Filtered DB Corrected DB Reproduced DB

Condition Constant term TV Constant term TV Constant term TV
states βi1 βi2 βi1 βi2 βi1 βi2

0.247 0.325 0.214 0.362 0.270 0.415
1 (0.238,0.256) (0.267,0.378) (0.205, 0.224) (0.313,0.421) (0.257,0.288) (0.353,0.477)

1.949 1.646 1.538 0.060 1.949 1.646
0.046 0.164 0.037 0.191 0.034 0.186

2 (0.043,0.047) (0.148,0.178) (0.033,0.038) (0.173,0.215) (0.030,0.036) (0.170,0.202)
1.435 1.903 1.864 0.584 1.435 1.903
0.139 - 0.127 - 0.105 -

3 (0.131,0.148) - (0.120,0.134) - (0.099,0.114) -
0.232 - 0.020 - 0.232 -
0.163 - 0.131 - 0.113 -

4 (0.150,0.183) - (0.118,0.143) - (0.101,0.121) -
0.409 - 0.117 - 0.409 -

Note) The values in the blankets show lower and upper bound values of 95% confident
interval. The third value in each row is referred to value from Geweke statistical test.

Table 4.7: Estimation results for average hazard rates.

Condition Filtered Corrected Reproduced
States DB DB DB

1 0.311 0.286 0.360
2 0.079 0.075 0.069
3 0.139 0.127 0.107
4 0.163 0.131 0.112
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Figure 4.6: Deterioration curves - database comparision.

The problem of over-estimation on the hazard rates of condition states i = 3, 4 is

because of measurement errors. Especially, in the case that M&R actions had already

implemented on a number of the road sections in the past. For example, when the

condition state of a road section reachs to i = 3, mistakes in recording might happen

since the corresponding values of rut index are progressing in a negligible manner. This

finding suggests future study to develop a methodology to capture the transition pattern
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of performance indexes like the rut index in an accurate way.

4.6.4 Simulation of the reproduced database

It is difficult to verify the accuracy of estimation results using the hidden Markov hazard

model just with the observed monitoring data alone. To verify the accuracy of the

estimation results, it is better to use the obtained estimation results of exponential

Markov hazard model to generate the samples through the MCMC simulation. This

section details the steps of simulation with the reproduced DB.

The values of parameters presented in the table 4.6 under the filtered DB and the

corrected DB are used as the inputs of the hidden Markov hazard model. In addition, the

traffic volume of large-size car is considered as a main characteristic variable. Moreover,

the properties of the Markov transition probability matrix obtained by using the hidden

Markov hazard model are used to update the properties of the Markov transition matrix

in the exponential Markov hazard model. With this approach, the Markov transition

probability πij(z) can be repeatedly updated through equation and (4.1). The so-called

“virtual condition state” at time τ kt (t = 1, · · · , T ) is randomly generated by using the

MCMC simulation in following manners:

• Firstly, the observed transition probability π1j(z
k
1 ) at time τ k1 is considered, with

zk1 as the inspection interval counted from t = 1. Next, the true condition state

ĥ(τ k1 ) = î at τ ki is randomly generated.

• Secondly, the transition probability πîj(z
k
2 ) is considered. The true condition state

in this step alters to be ĥ(τ k1 ) = î. Next, the true condition state ĥ(τ k2 ) = ĵ is

randomly generated.

• Finally, the true condition state m̂(τ kt ) is randomly generated in a similar algo-

rithm.

The distribution of measurement errors (as referred to Fig. 4.4) and the observed

condition states m̂(τ kt ) at respective inspection times are considered in the MCMC

simulation for generating sampling population. The sampling population is therefore

referred as the reproduced database (reproduced DB), and used to estimate the true

condition state ĥ(τ kt ) (t = 1, · · · , T ). Table 4.6, table 4.7, and Fig. 4.6 highlight that

the hidden Markov hazard model has produced a better estimation result than that of

using the exponential Markov model under the existence of measurement errors.
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4.7 Conclusion

In this Chapter, we have proposed an innovative analytical approach to forecast the

deterioration process of infrastructure through a hidden Markov hazard model. In the

model, measurement errors are considered as random variables. Measurement errors are

eliminated through the assumption of prior and posterior distribution in Bayesian esti-

mation. Furthermore, Markov Chain Monte Carlo simulation is introduced to generate

random sampling population in Bayesian estimation algorithm.

We have presented an empirical study on the Japanese national road system. Estimation

results reveal a fact that measurement errors have actually existed in the monitoring

data, particularly concerning condition state 3 and 4. Based on the estimation results

of using the exponential Markov hazard model, we generate a reproduced database and

use it in the hidden Markov hazard model. The estimation results are improved in the

case of using the reproduced DB.

However, we have not discussed several points, which will be considered as topics for

extending this study in the future:

• The empirical study is carried out only on the pavement system. However, this

model can be applied for various types of infrastructure. Depending on structural

characteristics and the prior knowledge of each infrastructure system, measure-

ment errors can be considered not only as a random variable but also as in the

form of a linear function.

• The model can be extended if the hazard rate is considered in the form of mixture

model. The mixture model can be useful to eliminate the effects of various factors

on measurement errors.

• Since the estimation results revealed a high risk of having measurement errors

with condition state 3 and 4 in monitoring and inspection of pavement system,

it is suggested that future research should pay attention on finding the reasons

causing measurement errors on condition state 3 and 4.



Chapter 5

Time-dependent Repair Strategy

5.1 General introduction

Water pipelines system in a mega city is considered as one of the most important

infrastructure system of the city. Major engineering function of the system is for trans-

portation of clean and purified water from treatment and distribution plants to various

users including organizations, factories and households. Due to the limitation of land-

use and social requirements, in most of the case, pipelines are placed as underground,

beneath the pavements, railways and other infrastructures [76]. In view of the pipeline

as underground system, one of the main challenging tasks for engineer is to understand

the deterioration behaviors such as: leakage occurrence, corrosion progress, wall of pipe

over the time, external impact pressure, etc. This query is indeed necessary in order to

efficiently operate the system so as to provide the best quality and sufficient volume of

water for the city dwellers.

The main physical deteriorate problem of pipeline is corrosion resulting from many in-

fluential factors such as: internal fluid pressure, material elastic modulus, longitudinal

stress, coating type, soil impact, external load and many others. Evidently, corrosion

over the operation time undoubtedly and slowly leads to leakage and break of pipe.

In fact, leakage occurrence and break of pipeline system in a mega city due to natu-

ral corrosive process and external factors have been well-documented as a widespread

problem. As a sequent, water supply companies are asked to bear huge losses due to

pressure head losses, high repair and penalty cost in case of damage occurrences. Ad-

ditionally, in view of social losses, a great amount of money needs to be allocated for

other potential adverse consequences such as flooding, fast deterioration of roads, road

congestion, closing of business and shopping centers and other indirect expenses [77].

87
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As the matter of course, data on actual performance of pipelines over the years is often

absence because of its complexity and high cost in inspection. For example, the visual

inspection requires excavation of existing upper structures, which therefore prevents

other services from normal operation. Moreover, in the case of regular maintenance or

immediate repair, the involved costs are often claimed to be considerably high. Thus,

in an economical view, managers prefer to select the option of renewing the pipeline

to repair alternative because the overall cost in fact receiving very small variation from

material cost itself. This ideal consequently leads to the demand of determining the

optimal renewal time based on the principle of minimizing the overall life cycle cost

(LCC).

The determination for renewal duration is in close link not only to the overall cost but

also to the durability of pipeline. Naturally, high durability pipeline is often turning to

have longer optimal renewal time. In the situation of having various types of pipelines,

selecting the best one that satisfies both high durability and minimum LCC requires an

appropriate benchmarking study. In consideration of benchmarking, suffice to say that

only when the optimal renewal duration of each pipeline type is determined, a selection

of the most appropriate technology of pipelines would be feasible.

This study aims to formulating an optimal renewal model of pipeline system. Pipeline

systems are subjectively categorized into different types according to the characteristics

of construction materials. Each type of pipeline is further grouped by differences in

diameter. Weibull hazard function is employed to address the elapsed time of each

pipeline measuring from its buried time. The physical impact factors are in form of risk

factor with a certain probability or range. Each impact factor results in a particular

risk level and is integrated into hazard function. Expected life cycle cost considers both

direct replacement cost and indirect social cost.

The model is used for forecasting the deterioration of pipelines and determining the

optimal renewal time that offers the minimum expected life cycle cost of each pipeline.

The optimal types of pipeline could be identified as the best alternative for future

replacement. The presumption of model is presented in the second section. The third

section discusses the deterioration process of pipeline system. The best renewal interval

model is portrayed in the fourth section. Empirical application to the water distribution

network of Osaka city, which was established in 1895, is examined and explained in the

fifth section.
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5.2 Pre-assumption of the Model

Suffice to say that the demand for pipeline replacement of water distribution network

would not become a heavy burden if abundant resource were allocated annually. How-

ever, the scarcity of resources bring up to the managers a question of when, how and

what to do for the entire network and for individual pipeline. Thus, for managerial

purposes, it ought to be important not only to estimate the optimal renewal time but

also the most appropriate substitute type of pipeline for present and future replacement.

In pipeline system, there are two distinguish level of deterioration, denoting as Ei(i =

1, 2). Level E1 reflects the healthy condition in good level. Whilst, level E2 denotes

the pipeline is under leakage, damage or destruction. Anytime when the condition

level E2 is detected, the damaged pipeline will be replaced to a new one immediately.

In the concurrence of incident, especially in the mega cities, tap water will spill over

the surface of the road, or shopping center that lead to the social damage such as:

traffic congestion, flooding and downtime of office, business center in the downtown. By

substituting the old pipeline proactively, the risk of undertaking the incident could be

mitigated. This is under the control and decision of Water Supply Company. As the

matter of course, the substitution of pipeline demands an increase in the replacement

cost. It is therefore important to harmonize the trade-off situation by introducing the

optimal renewal interval with respect to the summation of total social cost and renewal

cost as a whole.

5.3 Deterioration Process

In hazard analysis, the deterioration of element is subjected to follow a stochastic process

[16]. For pipeline, as previously mentioned, two condition level E1, E2 are defined.

Figure 5.1 describes the deterioration process of pipeline and choice of renewal. In the

case of renewal, the condition state from E2 must be changed into E1 as for new pipeline

and the pipeline resuming its normal performance condition. The renewal is carried out

at alternative time tk (k = 0, 1, 2, ...). In this way, the next renewal time is denoted as

t = t0 +τ , where τ indicating the elapsed time. The life span of the pipeline is expressed

by a random variable ζ. The probability distribution and probability density function

of the failure occurrence are F (ζ) and f(ζ) respectively. The domain of the random

variable ζ is [0,∞]. The living probability (hereafter named as survival probability)

expressed by survival function F̃ (τ) can be defined according to the value of failure

probability F (τ) in the following equation:
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Figure 5.1: Deterioration and Renewal Choice.

F̃ (τ) = 1 − F (τ). (5.1)

The probability, at which the pipeline performs in good shape until time τ and break

down for the first time during an interval of τ + ∆τ can be regarded as hazard rate and

expressed in the following equation:

λi(τ)∆τ =
f(τ)∆τ

F̃ (τ)
, (5.2)

where λ(τ) is the hazard function of the pipeline. In reality, the breakdown probability

depends largely on the elapsed time of pipeline since its construction time. Thus, the

hazard function should take into account the working duration of the pipelines. In

another word, the memory of the system should be inherited. Weibull hazard function

is satisfied in addressing the deterioration process:

λ(τ) = αmτm−1, (5.3)

where α is the parameter expressing the arrival density of the pipeline, and m is the

acceleration or shape parameter. The probability density function f(τ) and survival

function F̃ (τ) in the form of Weibull hazard function can be further expressed in equa-

tion (5.4) and (5.5):

f(τ) = αmτm−1 exp(−ατm), (5.4)

F̃ (τ) = exp(−ατm). (5.5)
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5.4 Risk Factors and Estimation Approach for Weibull

Parameters

5.4.1 Risk Factor and Covariates

5.4.1.1 Risk Factor

The corrosion process of pipeline is affected by many internal and external factors. As

earlier mentioned, the influential factors include material yield stress, length, radius,

pipe wall thickness, traffic load, unit soil weight, thermal expansion coefficient, internal

fluid pressure and many others. These factors should be considered as either determin-

istic or random variables with specific mean and variance depending on the availability

of gathered data and information. Evidently, these factors are proportionally contribute

to the deterioration level with difference variation [76, 78]. It is therefore, it is under-

standable to propose an integrated risk factor κ in form of probability value. This risk

factor receives different value in the case of different mega city, different type of water

distribution system, materials and so on and so fourth. Estimation of risk factor can be

retrieved from several physical models. Further expression of hazard function whereby

considering the risk factor κ is as follow:

λ(τ) = καmτm−1. (5.6)

The probability density function f(τ) in (5.4) and survival function in (5.5) F̃ (τ) are

further expressed as

f(τ) = καmτm−1 exp(−κατm), (5.7)

F̃ (τ) = exp(−κατm). (5.8)

A further notice in the case of using the risk factor is that κ should be used for respective

record available in the data set.

5.4.1.2 Covariates

Beside the risk factor, another popular approach in addressing the impacts and corre-

lations of characteristic variables (or covariates) is to consider location parameter α in
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additive form of covariates:

α =
M
∑

i=1

βixi (i = 1,...,M), (5.9)

where m is total number of covariates and the value of first covariate equals to 1 as

a constant value. Depending the availability of database, numbers of covariates are

selected in to numerical calculation.

5.4.2 Estimation Approach for Weibull Parameter

It is assumed that the total number of recorded data is S, which is relatively equivalent

to entire length of the pipelines system. In which, each record refers particularly for s

(s = 1, ..., S) unit of length (possibly in meter or kilometer). This type of separation is

often found for the convenience of management of each city. Equations (5.4) and (5.5)

are thus in the following formula:

f(ts) = αmtm−1
s exp(−αtms ), (5.10)

F̃ (ts) = exp(−αtms ). (5.11)

Deterioration of section s is considered as mutually independent from other part of the

pipelines system. For this reason, the simultaneous probability density of the deterio-

ration is expressed in the following likelihood function:

L(α,m : ts) =
S
∏

s

{

F̄ (tms )
}(1−δs) {f(tms )}δs

=
S
∏

s

{exp(−αtms )}(1−δs) {αmtm−1
s exp(−αtms )}

δs ,

(5.12)

where δs is dummy variable receiving its value of 1 when leakage was encountered and

0 otherwise. For ease of mathematical manipulation, logarithm for both sides of equa-

tion (5.12) is referred. Thus, following equation is additional named as log-likelihood

function:

lnL(α,m : ts) =
S
∑

s

[

(1 − δs)(−αt
m
s )

+δs {lnα+ lnm+ (m− 1) ln ts − αtms }

]

. (5.13)

In order to obtain the two parameter α and m, the maximum likelihood estimation

method is used. The estimator of parameter value θ which maximizes the logarithmic
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likelihood function (5.13) is given as θ̂ = (θ̂1, θ̂2) (θ1 = α, θ2 = m) and must simultane-

ously satisfies following condition:

∂ lnL(Ξ, θ̂)

∂θi
= 0, (i = 1, 2). (5.14)

Furthermore, the estimated value
∑

θ̂ of the asymptotic covariance matrix of the pa-

rameter can be expressed as follow:

∧
∑

(θ̂) =

[

∂ lnL(Ξ, θ)

∂θ∂θ′

]−1

. (5.15)

The optimal value of θ̂ = (θ̂1, θ̂2) are then estimated by applying numerical iterative

procedure such as Newton method for simultaneous equation (5.15) of 2 dimensions.

This study employs Newton-Rhapson method. The statistical t-test is calculated by use

of covariance matrix value
∑

θ̂.

5.5 Formulation of the Optimal Renewal Interval

Model

The occurrence of the incident results in an amount of social cost, which is assumed to

be a constant number C. The expected social cost EC(z) is estimated by use of the

predetermined interval of renewal z. Thus, its value is followed the probabilistic manner

via probability density function f(τ) defined in equation (5.4). Over the continuous

time, counting from the buried time or the previous renewal time, the expected social

cost would be in the integral form as expressed in the following equation:

EC(z) =

∫ z

0

Cf(t) exp(−ρt)dt. (5.16)

The co-efficient ρ is discounted rate of money over the interval z. On the other hand,

another constant amount of money denoted as I is spent for renewal activities, which

is subjected to either occurrence of incident at time τ or the age of pipeline reaching to

time z. It is therefore important to note that the renewal cost, when the age of pipeline

becomes z, must take the survival probability F̃ (τ) into its calculation. Consequently,

the present discounted cost of the next pre-determined renewal time EL(z) can be

expressed in the following form:

EL(z) =

∫ z

0

If(t) exp(−ρt)dt+ F̃ (z)I exp(−ρz). (5.17)
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The expected life cycle cost after the next renewal time is evaluated as net present value

of social costs, renewal costs. As the social and renewal cost are in fixed values, the

expected LCC alters to be equal for every renewal times. In another word, expected LCC

at next renewal time is equal to the expected LCC estimated at the present renewal. The

expected LCC, denoted as J(0 : z), can be regulated through the regression estimation

shown in equation (5.18):

J(0 : z) =

∫ z

0

f(t){c+ I + J(0 : z)} exp(−ρt)dt

+F̃ (z){I + J(0 : z)} exp(−ρz). (5.18)

The following two functions Γ(z) and Λ(z) are defined:

Γ(z) =

∫ z

0

f(t) exp(−ρt)dt =

∫ z

0

αmτm−1 exp(−ατm − ρt)dt, (5.19)

Λ(z) = F̃ (z) exp(−ρz) = exp(−αzm − ρz). (5.20)

Substituting equations (5.19) and (5.20) into equation (5.18), the following explicit form

for the expected LCC is obtained:

J(0 : z) =
(c+ I)Γ(z) + IΛ(z)

1 − Γ(z) − Λ(z)
. (5.21)

The optimal value function Φ(0) can be expressed as the minimum expected LCC eval-

uated at the initial time:

Φ(0) = min
z
{J(0 : z)}. (5.22)

The estimation for the optimal interval z∗ from equation (5.21) can be handled by

solving the optimization condition of the first derivative as expressed in the following

equation:

dJ(0 : z)

dz
=

ψ(z)

{1 − γ(z) − Λ(z)}2
= 0, (5.23)

where

ψ(z) = (C + I)Γ′(z) + IΛ′(z) + C{Λ(z)′Γ(z) − Γ′(z)Λ(z)}, (5.24)

Γ(z)′ = dΓ(z)/dz and Λ(z)′ = dΛ(z)/dz. Obtaining the value of optimal interval z∗

requires to solve the equation ψ(z) = 0. Another numerical approach to solve equation

(5.21) is further explained in appendix A.
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5.6 Optimal Renewal Interval and Technology In-

novation

The water distribution network composes of many different types of pipes. Thanks to

the technology innovation in pipe’s materials, many new and better quality types of

pipe have been introduced. As a matter of course, along the time, pipelines made from

outdated materials are no longer in production. The aging pipelines are deeming to be

substituted by better quality pipes. It is assumed that the network composes of type

i (i = 1, ..., N), which is available in the stock (N is total number of type i). On the

other hand, there exists pipes of old fashion type j (j = 1, ...,M) (M is the total number

of old type). The selection of pipe according to its type for renewal activities can be

described in two subsequent steps as follows:

5.6.1 Step 1-Selection of Best Type of Pipe

The optimization approach expressed in equation (5.21) and (5.22) warrants the estima-

tion for the best interval renewal time for each type i (i = 1, ..., N) of pipelines. From

equation (5.18), the following equation is regarded as the expected LCC for type i:

Ji(0 : zi) =

∫ zi

0

fi(t){c+ Ii + Ji(0 : zi)} exp(−ρt)dt

+F̃i(zi){I + Ji(0 : zi)} exp(−ρzi). (5.25)

The best type i∗ is the one meeting the minimum expected LCC condition among N

types:

i∗ = arg min
i
{Ji(0 : zi) : i = 1, · · · , N}. (5.26)

The sign arg mini denotes the minimization searching for the function in the paren-

thesis with respect to i. The best type i∗ evaluated from condition of equation (5.26)

would become optimal type for replacement of old types of pipelines in the entire water

distribution network.

5.6.2 Step 2-Replacement for Old Type Pipeline

In regard to replacement rules, the expected life cycle J̃ i
∗

j (zj : τj) cost calculated for the

old type j of pipe by using the optimal type i∗ acquired from Step 1 and after interval
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time zj become the net present value expressed in the following equation:

J̃ i
∗

j (zj : τj) =

∫ zj

0

fj(tj|τj){c+ Ii∗ + Ji∗(0 : zi∗)} exp(−ρtj)dtj

+F̃j(zj|τj){I + Ji∗(0 : zi∗)} exp(−ρzi∗). (5.27)

The problem of seeking for the optimal renewal time z∗j (τj) for old type j with elapsed

time τ is by solving the optimization condition in the following expression:

z∗j = arg min
zj

{J̃ i
∗

j (zj : τj)}. (5.28)

The so called ”Switching ratio Θ” , inferring the rate of renewal by using the new

type of pipelines over the old types, is expected to become an important indicator for

replacement planning. Definition of the rate is the ratio of z∗j over z∗i :

Θ =
z∗j
z∗i
. (5.29)

5.7 Average Cost Estimation.

The application of average life cycle cost analysis has been widely recommended for

economic evaluation of public infrastructure, Especially, for infrastructure with its long

service life. This is due to the fact that, over the years, discount rate ρ often exerts a

high fluctuation in its value. In order to minimize the negative impact on analysis from

such high fluctuation of discount rate, [79] has proved the benefit of using average cost

analysis.

The case when life cycle cost is applicable is in line with the case when the denominator of

the expression 5.21 becomes 0 in the limit of which discount rate ρ = 0. However, when

the value of denominator equals to 0, the equation can not be solvable. In consideration

average cost over the service life, we apply estimation for average cost of pipeline type

i (i = 1, · · · , N) by following equation:

ACi(z) =

∫ z

0
(c+ Ii)fi(t)dt+ F̃i(z)Ii

z
. (5.30)

The optimal renewal time z∗i for pipeline type i can be estimated by solving the minimum

condition of equation 5.30:

min
z
{ACi(z)}. (5.31)
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Among N number of type i, again, it is possible to select the best type i∗ in view of

least life cycle cost:

i∗ = arg min
i
{ACi(z

∗
i ) : i = 1, · · · , N}. (5.32)

Eventually, it is possible to define the average cost if the best pipeline type i∗ is used to

replace the old type of pipeline j. And thus, it is necessary to define the renewal period

zj in case of renewal with best possible pipeline technology:

AC
i∗

j (zj) =

∫ zj

0
fj(tj|τj)(c+ Ii∗)dtj + F̃j(zj|τj)Ii∗

zj
. (5.33)

F̃j(tj|τj) is the probability, to which, leakage or breakdown do not occur during time

tj and continue the same condition state until time τj. If the best pipeline type i∗

now is used, the average cost ACi∗(z
∗
i ) is generated. In addition, the accumulative

additional cost generated by continuously using the old pipeline for the zj period can

be determined:

CAC
i∗

j (zj) = {AC
i∗

j (zj) − ACi∗(z
∗
i )}zj. (5.34)

In the end, the best renewal time z∗j (τj) for pipeline type j can be easily estimated by

choosing the renewal time satisfying the minimum condition:

z∗j = arg min
zj

{CAC
i∗

j (zj)}. (5.35)

5.8 Empirical Study

5.8.1 Overview of Empirical Study

The water distribution network of Osaka city was mainly constructed during the peri-

ods of 1950s and 1960s. The network has undergone nice times of expansion to meet

the need of the city [80]. The total length of conduct, transmission and distribution

pipe is approximately 5,000 km. Since 1965, the City has systematically upgraded the

distribution system by installing new pipes, renewing aged ones, lining all pipes, etc. As

a result, a network of distribution pipes in the city has been satisfactorily established,

eliminating insufficient supply and low water pressure supply areas. To date, the subse-

quent maintenance and renewal activities have been so far implemented for over 4, 000

km, requiring about more than 390 billion Japanese Yen.
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Technically, the entire water distribution system composes of four distinguish types,

which belongs to class A, C, F and FL. The three types C, F and FL are the old cast

iron types, which were buried in the early period. At the present, those pipes are no

longer in the manufacturing. As the matter of course, the social cost C, direct cost

I and discounted rate ρ plays a center role in establishing the optimal renewal years

as well as the expected LCC, sensitivity analysis with focus on the ranges are drawn

for respective types of pipelines. However, for ease of estimation, benchmark case was

selected with social cost C = 5 million Yen, I = 1 million Yen and ρ = 0.04.

5.8.2 Estimation Results

5.8.2.1 Weibull’s parameters and survival probability

The parameters α and m of embedded hazard function are estimated by maximum

likelihood method with historical sectional records for each type of pipeline. Values of

α and m are then verified with significant degree of t test values. Table 5.1 presents

the results of estimation for two comparative cases. The first case refers as case, to

which explanatory variables were excluded from estimation. Second case were when the

effective length as characteristic variable was considered in estimation. Regarding the

second case, as presented in the table, unknown parameter β1 is referred to a constant

term with its value of 1 for characteristic variable x1. Unknown parameter β2 is referred

to the effective length of pipeline system.

In this study, other characteristic variables, which reflect the influence of outer and inner

rutness, soil unit weight, top traffic volume, etc, were neglected due to its small impact

or data unavaibility. The value in blankets in Table 5.1 refers to value of statistical

t− test. It is realized from t− test value that effective length of pipeline somehow effect

the deterioration process. This conclusion is further understandable from comparison

of AIC 1 (Akaike Information Criteria) [81] values. AIC values of case with considering

effective length of pipeline are lower than the case without that covariate in estimation

(AIC values are shown in the last line of each row in Table 5.1).

However, as can be proved from Figure 5.2, Figure 5.3 and Figure 5.4, the difference

in decrease of survival probability over the years are not significant for both cases of

pipeline type C, F and FL. A considerable variation between two survival probability

curve is realized only for pipeline type A from Figure 5.5. Since the largest sampling

1AIC-Akaike Information Criteria was developed by Hirotsugu Akaike, a Japanese statistician, in
1971. The AIC is not test on the model in the sense of hypothesis testing, rather it is a tool for model
selection.
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Table 5.1: Estimation Results for the Parameters of Weibull Functions-Types

Pipeline Without covariate With covariate
type a m b1 b2 m

C 1.11E-05 2.496 2.51E-06 1.49E-04 2.484
(28.528) (30.275) (6.402) (19.666) (34.909)

5053.724 4,031.920

F 2.55E-05 2.293 4.92E-06 3.25E-04 2.288
(46.256) (48.825) (9.337) (32.944) (56.613)

13,523.840 11,154.640

FL 1.81E-05 2.400 6.73E-06 1.22E-04 2.391
(14.537) (15.432) (4.375) (7.365) (17.790)

1,331.980 1,114.080

A 8.87E-05 1.907 8.27E-06 4.18E-04 2.144
(29.416) (31.380) (10.117) (26.642) (35.865)

6,654.540 5,588.270

Note) Value in the blanket (−) are stasitical t-test. Values in the last row of each type are

AIC values.
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Figure 5.2: Survival Probabilities of Type C With and Without Covariates.

population has been accumulated for pipeline type A (about more than 15,000 data), it

can be concluded that, the impact of effective pipeline length has tendency to increase

with the larger size of sampling population.

A comparative look in the survival probability curve of each pipeline type is drawn in

Figure 5.6. As can be seen from the figure, pipeline type C and FL have faster decrease

than pipeline type F. However, all three old pipeline types exert to has 0.5 probability

of being broken after 80 years in operation. On the other hand, pipeline type A deems

to has much longer life expectancy than the others.
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Figure 5.3: Survival Probabilities of Type F With and Without Covariates.

EFGHIHJKLGMNJNIK
IOP

QQRS
QRTQRU
QRVW

Q SQ TQ UQ VQ WQQ WSQ WTQ WUQ WVQ SQQ

XYZ[\]Z ^\_`aY Z̀bXYZ[ ^\_`aY`Zb

cd`efbg ZYhb ijb`afk
Figure 5.4: Survival Probabilities of Type FL With and Without Covariates.

5.8.2.2 Optimal renewal time and expected life cycle cost

Estimation for optimal renewal time and expected life cycle cost is carried out in the

second phase after obtaining the values for Weibull’s parameters and the associate costs.

Minimization principle to seek for the optimal duration z∗ is empirical analyzed by using

equations (5.25- 5.28). Results of estimation are presented in Figure 5.7 for benchmark

case (C = 5 million Yen for social cost, I = 1 million Yen for direct repair cost and

ρ = 0.04 for discount rate). It ought to recognize that the optimal renewal duration is

in the range of 50 to 60 years for old types of pipelines and about 80 years of optimal

renewal duration for type A.
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Figure 5.5: Survival Probability of Type A With and Without Covariates.
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Figure 5.6: Survival probabilities among Different Types of Pipelines.

5.8.2.3 Switching Rate

Figure 5.7 further describes the changes of LCC for respective old types of pipelines

when using type A for replacement. In this case, the optimal renewal years yield slightly

shorter than if using the old types of pipeline. For example, if using type A to replace

type F, the optimal renewal duration is 59 years instead of 58 years. Based on the

definition in equation (5.27), the switching rate for type C, F and FL are (ΘA−C =

55/55 = 1.000), (ΘA−F = 58/59 = 0.983), (ΘA−FL = 54/55 = 0.981) respectively.

5.8.2.4 Sensitivity Analysis

It is important to note that the expected optimal renewal time and its associated cost

for respective type of pipelines depend strongly on three parameters social cost C, direct
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Figure 5.7: Comparision of Expected Life Cycle Cost with Switching Curves.
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Figure 5.8: Sensitivity Analysis-range of Discount Rate ρ.

repair cost I and the discount rate ρ. Any change in the values of these parameters

could positively lead to large variation in term of optimal renewal years and expected

life cycle cost. Thus, sensitivity analysis with ranges in values of parameters should be

referred so as to provide a thoughtfully observation into the selection [82]. Results are

shows in Figure 5.8, Figure 5.9 and Figure 5.10 depicting relationship between optimal

renewal duration and discount factor ρ, social cost C and direct repair cost I, which

applies for the renewal case of pipeline type C.

Figure 5.8 draws the change in optimal renewal years when changing the value of dis-

count factor ρ. Benchmark optimal renewal duration curve is referred in the case of

keeping C = 5 million Yen, I = 1 million Yen. Changing in value of either C or I conse-

quently affects the optimal duration for renewal. For example, as can be seen from the



Chapter 5. Time-dependent Repair Strategy 103

�������
�� �!�"�#�
$�
�%��� �% �� �%��� �% ��  %���  % �� !%��� !% �� "%��� "% �� #%���&'()*+,-./.0+,

()*.12.+-34
56789: 76;< =>?@ABCBDEFGHIJKLMNO@ABCBP @ABCBQ RJSTULHV WGH

Figure 5.9: Sensitivity Analysis-range of Social Cost C.
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Figure 5.10: Sensitivity Analysis-range of Direct Repair Cost I.

figure, comparing to the benchmark case, increasing social cost C = 1 million relatively

reduces the optimal duration about 3 to 10 years. Moreover, when ρ becomes either

very small (going close to 0) nor large, convergence of optimal duration are obtained.

Convergence of optimal duration is also realized when ρ receives its value greater than

0.1. High slope of optimal duration curve is acknowledged when ρ ≤ 0.05.

The relationship between optimal renewal duration and change in social cost is sketched

in Figure 5.9. It is realized that the increment in social cost results in the gradual

shrink of optimal renewal duration. For example, if 500 thousand Yen is added up to

the benchmark case when keeping the same I = 1 million Yen and ρ = 0.04, the optimal

duration is shortened about 6 to 10 years.

Figure 5.10 shows the correlation between optimal renewal duration and change in value

of direct repair cost I. The linear rise of the curve proves a fact that higher direct repair

cost leads to higher optimal renewal duration. For benchmark case (C = 5 million Yen,
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Figure 5.11: Sensitivity Analysis - Average Cost.

I = 1 million yen and ρ = 0.04), if happening the increase of 500 thousand Yen in I,

the optimal renewal duration goes up about 3 to 10 years. In the case when changing

the discount factor ρ, it is found that the lower value of discount factor is, the smaller

variation of optimal duration becomes.

In the case of using average cost analysis, the changes of optimal renewal years against

social cost and direct renewal cost are plotted in Figure 5.11. In this Figure, we assume a

constant value of direct cost I = 1 million Yen when social cost change in the range from

1 Million Yen to 20 Million Yen. On the other hand, when direct cost I changes, the

social cost C is assumed to equal to 5 Million Yen. All relative costs are approximately

calculated for pipelines with relative length of 140 m. It is noted from this point that,

the range of assumption value for either social cost and direct cost can be changed

depending on various local conditions where analysis is deem applicable.

5.9 Summary and Recommendations

This chapter has presented a methodology to estimate the optimal renewal time of

pipeline systems. The Weibull hazard function was employed to evaluate the survival

probability of each types of pipeline with respect to the diameter. The mathematical

formulation for calculating the total expected life cycle cost was introduced. The total

expected life cycle cost took into account social cost and direct renewal cost in the

event of leakage or breakdown of the pipeline. A system of water distribution network

is comprised of many types of pipe materials, some of which might better be replaced

to the optimal type of pipeline with pre-determined plan according to their forecasted
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survival probability. This is of crucial importance to uphold the safety level of the entire

system, especially in the mega cities.

An empirical application of the model to the water supply pipeline system in Osaka

city was carried out. Results of the estimation identified the optimal renewal time for

each type of pipeline. Sensitivity analysis reveals social cost C and discount factor

I as important input factors of the model. These two values should be thoughtfully

calculated for a more accurate outcome of optimal renewal time and concerning LCC.

From the application view point, this model can be applied not only to water distribution

networks but also to other types of underground infrastructure system.





Chapter 6

Mixture Hazard Model and

Benchmarking Approach

6.1 General introduction

The statistical hazard models based on the visual inspection data have been widely

practiced in the field of infrastructure asset management. In the models, Markov chain

theory with it presumption of accuracy and generality to real data has been usefully

applied. Furthermore, with use of Markov decision process, decision making process can

gain the advantage for management of infrastructure system, especially at strategic and

macroscopic level.

In addition to the decision making process at strategic level, it is necessary to develop

a model which can be applied to generate information for various levels. For exam-

ple, in bride management, a concrete maintenance plan for some important individual

components is important; this plan can be regarded as for “component level”. In fact,

deterioration processes of individual components under the same structural character-

istic and an environmental condition are also different. Therefore, in order to develop

a more exquisite deterioration forecast technique, it is acknowledged to consider the

heterogeneity of the deterioration process of individual components which are under the

same structural characteristic and environmental condition. This Markov deterioration

hazard model differs from the model, which also employs Markov transition probability

based on the total of huge deterioration information and average deterioration process.

However, in fact, there is obvious not much comprehensive study on Markov deteriora-

tion model that pays great attention on the heterogeneity of the deterioration process.

107
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These might due to constrains like facing accuracy and efficiency of collected informa-

tion, increasing work load of business and management...etc, which limited previous

studies on establishing sound assumptions to heterogeneity factor. Therefore, the de-

velopment of a more efficient deterioration forecast technique in consideration with the

heterogeneity of the deterioration process is mandatory.

The favor for mixture model and benchmarking approach is further rendered by the quest

for the selection of best pavement technology, particularly based on material, structure

and construction technique. This quest is realized in high attention, especially in the

developing nations [1]. Therefore, beside the analytical method for mixture model, this

chapter extends its words on benchmarking study.

A good example of benchmarking application is the case of Vietnam, where the entire

road system is comprised of many different technologies. Reason to this is, as the

matter of fact, due to limited capacity, the country often borrowed technologies from

abroad. National standards for design and construction practices are somewhat mimic

versions of guidelines, most of them are copied from developed nations. This practice

is definitely unlike to that of developed nations. Consequently, leads to huge amount

of efforts and budget in monitoring and maintenance during operation phases. Hence,

in view of long term and strategic management, there is a strong demand in searching

for the best pavement technology, which could become a national standard in pavement

management system.

6.2 Heterogeneity and Sampling Population

As a matter of fact, deterioration speed of one infrastructure component is always

different from the other even thought they share the same structural characteristics.

This is due to the fact that each component bears different working environment from

the other. For instance, the cracking rate of pavement section often contains some degree

of variation from each other even they belongs to a short distance road length. With

respect to the deterioration speed of the infrastructure with similar characteristics, it

is often the case that, only representing deterioration curve is drawn in connection to

average hazard rate. Without any exception, Markov hazard model is used to estimate

this average value. In a broaden understanding, suffice to say that the average value of

hazard rate is actually added or weighted by individual hazard rate of each component

or each group of similar component.

Probabilistically, hazard rate of individual component is distributed around the mean

of average value. An illustration of this situation is sketched in Figure 6.1. As can be
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Note) Each line represents for deterioration curve of individual road section or group of road sections
with similar characteristics.

Figure 6.1: Deterioration curve differences.

seen from the figure, at time τi the estimated condition state from forecasting model

is i. However, deterioration speed of individual can be either faster or slower than the

average curve as showed in dotted lines.

6.3 Mixture Markov deterioration hazard model

6.3.1 Markov transition probability and heterogeneity factor

In reality, deterioration process varies differently among pavement groups due to dy-

namic factors. Thus, it is hard to grant a homogeneous sampling population in estima-

tion. To express this inhomogeneous sampling population, many literatures in liability

modeling employ the term “heterogeneity factor”. In pavement system, we assume the

entire road system comprising of K group of road according to their technological dif-

ference. In each group k(k = 1, ..., K), total road section is Sk. And εk is referred as the

heterogeneity factor, which infers the change of characteristic of a peculiar hazard rate

i(i = 1, ..., I − 1) to a pavement section sk(sk = 1, · · · , Sk). Thus, the mixture form of

hazard function, which mentioned in equation (2.7) of Chapter 2, can be defined:

λsk

i = λ̃sk

i ε
k (i = 1, · · · , I − 1; k = 1, · · · , K; sk = 1, · · · , Sk). (6.1)

εk is always non-negative. In addition, it is understood that the higher value of εk is,

the faster deterioration speed of road section sk comparing to others. Within the one
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group of road sections (or one technology), the hazard rate of all ratings holds the same

the value of the heterogeneity factor εk. Counting all the road sections as a whole,

the distribution of εk is exactly representing the influence of individual group of road

sections on the overall deterioration process. Depending on structural characteristic of

each system, heterogeneity factor εk can be in form of a function or stochastic variable.

For measurable representation, we denote a set of value of εk (k = 1, .., K) as a vector

ε̄k. The bar [¯] indicates measurable value. As a result, we can further expressed the

survival probability in equation (2.11) by means of mixed hazard rate in equation (6.1)

for pavement group k:

F̃i(y
k
i ) = exp(−λ̃iε̄

kyki ). (6.2)

Siminarly, Markov transition probability expressed in equations (2.26-a)-(2.26-d) are

derived as follows:

πkii(z
k : ε̄k) = exp(−λ̃ki ε̄

kzk), (6.3-a)

πkij(z
k : ε̄k) =

j
∑

l=i

j−1
∏

m=i,6=l

λ̃km
λ̃km − λ̃kl

exp(−λ̃kl ε
kzk)

=

j
∑

l=i

ψlij(λ̃
k
) exp(−λ̃kl ε

kzk) (6.3-b)

(i = 1, · · · , I − 1; j = i+ 1, · · · , I; k = 1, · · · , K),

where

ψlij(λ̃
k
) =

j−1
∏

m=i,6=l

λ̃km
λ̃km − λ̃kl

. (6.4)

6.3.2 Parametric approach to heterogeneity factor ε

In parametric approach, the heterogeneity factor εk is assumed as a probability sample

extracted from Gamma distribution f(εk : α, γ):

f(εk : α, γ) =
1

γαΓ(α)

(

εk
)α−1

exp

(

−
εk

γ

)

. (6.5)

Gamma distribution f(ε : α, γ) has its mean µ = α.γ and standard variance σ2 = α.γ2.

In addition, if α = 1, it turns to be exponential distribution. For handy calculation

in the following writings, the mark k is temporary omitted. The life expectancy of

condition state i keep unchanging until or more than the time yi in equation 6.2 is
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actually the transition probability πii:

π̃ii(z) =

∫ ∞

0

πii(z : ε)f(ε : α, γ)dε

=

∫ ∞

0

exp(−λ̃iεz)
1

γαΓ(α)
εα−1 exp

(

−
ε

γ

)

dε

=
1

γαΓ(α)

∫ ∞

0

exp

{(

−λ̃iz −
1

γ

)

ε

}

εα−1dε

(i = 1, · · · , I − 1). (6.6)

By setting ui = (λ̃iz + 1
γ
)ε, equation 6.6 becomes

π̃ii(z) =
1

γαΓ(α)

∫ ∞

0

exp(−ui)

(

ui

λ̃iz + 1
γ

)α−1
1

λ̃iz + 1
γ

dui

=
1

γαΓ(α)

(

1

λ̃iz + 1
γ

)α
∫ ∞

0

exp(−ui)u
α−1
i dui

=
1

γαΓ(α)

(

1

λ̃iz + 1
γ

)α

Γ(α) =
1

(λ̃iγz + 1)α
. (6.7)

In general case, the Markov transition probability of changing condition state from i to

j under time interval z will be

π̃ij(z) =

∫ ∞

0

πij(z : ε)f(ε : φ)dε

=

∫ ∞

0

j
∑

l=i

ψlij(λ̃) exp(−λ̃lε̄z)f(ε : α, γ)dε

=

j
∑

l=i

ψlij(λ̃)

γαΓ(α)

∫ ∞

0

exp

{(

−λ̃lz −
1

γ

)

ε

}

εα−1dε

=

j
∑

l=i

ψlij(λ̃)

(λ̃lγz + 1)α
. (6.8)

With existence of the heterogeneity factor εk, hazard rate of individual group is thought

to be distributed as agreeing to average hazard rate λ̃i. In this understanding, it is

therefore assume for the Gamma distribution to have its mean of 1 and standard variance

of 1/φ. As a result, we can obtain the explicit form of Markov transition probability
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with respect to distribution of heterogeneity factor:

π̃ii(z) =
φφ

(λ̃iz + φ)φ
, (6.9-a)

π̃ij(z) =

j
∑

l=i

ψlij(λ̃)φφ

(λ̃lz + φ)φ
, (6.9-b)

(i = 1, · · · , I − 1; j = i+ 1, · · · , I).

6.3.3 Semi-parametric approach to heterogeneity factor ε

A great deal of past research has revealed the difficulties in defining the heterogeneity

factor εk. The assumption of the heterogeneity factor to be in the form of a function or

a stochastic variable crucially depends on the characteristics of the system itself and the

availability of monitoring data [16, 83]. This section focuses on applying mixture model

in the case that the value distribution of heterogeneity factor εk has a small dispersion.

In other words, the departure of heterogeneity factor εk from homogeneity is in a small

scale. This type of mixture model is named as the local mixture model. In exponential

family form f(x; ǫ) (where x and ǫ are the variable and heterogeneity respectively), local

mixing mechanism is defined via its mean parameterization δk:

g(x;µ) := f(x; ǫ) +
r
∑

i=2

fk(x; ǫ), (6.10)

where

fk(x; ǫ) =
δk

δǫk
f(x; ǫ).

Another class of the local mixture model that captures the behavior of scale dispersion

in mixture value of function f(x; ǫ), is defined as the local scale mixture model.

g(x; ǫ) := f(x; ǫ) +
r
∑

i=2

ǫk

k!
fk(x; ǫ). (6.11)

Expansion of functions in equations (6.10) and (6.11) can be seen to follow the Taylor

series. Since the likelihood function of Markov transition probability in equations (6.10)

and (6.11) belongs to the exponential family. It is possible to approximate the transition

probability as in the form of the local mixture distribution.

π̃ij(z) =

∫ ∞

0

πij(z : ε)f(ε)dε(i = 1, · · · , I − 1). (6.12)
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For convenience of mathematical manipulation, the local mixture transition probability

is assumed as an exponential function fmix(ǫ, z, λ) with mix indicating the abbreviation

of mixture. As the sequent, the mixture function fmix(ǫ, z, λ) can be described by

means of standard function f(ǫ, z, λ) and distribution H(ε). Equation (6.12) is further

simplified as

fmix(ε, z, λ) =

∫

f(ε, z, λ)dH(ε), (6.13)

where f(ε, z, λ) = exp(−ελz). Function f(ε, z, λ) is likely a function of ε about its

mean. Without no loss of generality, and as long as the mean exist, we can further

decompose equation (6.10) as follows:

exp(−ελz) = e−λz(1 + (ǫ− 1)(−λz) +
(ǫ− 1)2

2!
(−λz)2 + ... . (6.14)

This is the Taylor series. And thus, the quadratic form (when r = 2) is acceptable for

an accurate approximation. Consequently, an explicit form of approximation can be

derived for the Markov transition probability:

E(e−ελz) ≈ e−λz{1 +
(σλz)2

2
} (6.15)

and

π̃ii(z) = e−λ̃iz{1 +
(σλ̃iz)

2

2!
}, (6.16-a)

π̃ij(z) =

j
∑

l=i

ψlij(λ̃)e−λ̃lz{1 +
(σλ̃lz)

2

2!
}, (6.16-b)

(i = 1, · · · , I − 1; j = i+ 1, · · · , I).

6.3.4 Likelihood estimation approach

6.3.4.1 Parametric estimation approach

a) Estimation assumtion

The estimation of Markov transition probability and heterogeneity factor requires mon-

itoring data from at least two visual inspections. Supposing that the periodical moni-

toring data of Sk road sections is available. An inspection sample sk (a road section)

implies two consecutive discrete periodical inspections at times τ̄ sk

A and τ̄ sk

B = τ̄ sk

A + z̄sk ,

with its respective condition states h(τ̄ sk

A ) = i and h(τ̄ sk

B ) = j. Based on monitoring

data of
∑K

k=1 Sk samples, dummy variable δ̄sk

ij (i = 1, · · · , I − 1, j = i, · · · , I; sk =
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1, · · · , SK ; k = 1, · · · , K) is defined to satisfy the following conditions:

δ̄sk

ij =

{

1 h(τ̄ sk

A ) = i, h(τ̄ sk

B ) = j

0 Otherwise
. (6.17)

The range of dummy variable (δ̄sk

11 , · · · , δ̄
sk

I−1,I) is denoted by using the dummy variable

vector δ̄
sk . Furthermore, structural characteristics and environment conditions of the

road are expressed by means of characteristic variable vector x̄sk = (x̄sk

1 , · · · , x̄
sk

M), with

x̄sk
m (m = 1, · · · ,M) indicating the observed value of variable m for sample sk. The first

variable is referred as a constant term, with its value xsk

1 = 1. Thus, the information

concerning monitoring data of sample k can be described as Ξsk = (δ̄
sk , z̄sk , x̄sk).

The hazard rate of condition state i of sample sk can be expressed by using mix-

ture hazard function λsk

i (ysk

i ) = λ̃sk

i ε
k (i = 1, · · · , I − 1), with I as the absorbing

condition state satisfying the conditions πsk

II = 1 and λ̃sk

I = 0. The hazard rate

λ̃sk

i (i = 1, · · · , I − 1; sk = 1, · · · , Lk) depends on the characteristic vector of the road

section, and is described as follows:

λ̃sk

i = xskβ′
i, (6.18)

where βi = (βi,1, · · · , βi,M) is a row vector of unknown parameters βi,m (m = 1, · · · ,M),

and the symbol ′ indicates the vector is transposed. From equations (6.16-a) and

(6.16-b), the standard hazard rate of respective condition states can be expressed by

means of hazard rate λ̃sk

i (i = 1, · · · , I−1; sk = 1, · · · , Lk) and heterogeneity parameter

εk. The average Markov transition probability can be expressed in equation (6.16-b),

with consideration of characteristic variable x̄sk . In addition, the transition probability

depends on inspection interval z̄sk . As a result, transition probability πij can be ex-

pressed as a function of measurable monitoring data (z̄sk , x̄sk) and unknown parameter

θ = (β1, · · · ,βI−1, φ) as π̃sk

ij (z̄sk , x̄sk : θ). If the deterioration of road sections lk in

the entire LK samples are assumed to be mutually independent, the likelihood function

expressing the simultaneous probability density of the deterioration transition pattern

for all inspection samples is defined [50, 51]:

L(θ,Ξ) =
I−1
∏

i=1

I
∏

j=i

K
∏

k=1

Sk
∏

sk=1

{

π̃sk

ij (z̄sk , x̄sk : θ)
}δ̄

sk
ij . (6.19)
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By means of heterogeneity factor expressed by Gamma distribution, we further express

the explicit form of the Markov transition probability in equations (6.9-a) and (6.9-b).

π̃sk

ii (z̄sk , x̄sk : θ) =
φφ

(x̄skβ′
iz̄
sk + φ)φ

, (6.20-a)

π̃sk

ij (z̄sk , x̄sk : θ) =

j
∑

s=i

ψsij(β)φφ

(x̄skβ′
sz̄
sk + φ)φ

, (6.20-b)

(i = 1, · · · , I − 1; j = i, · · · , I; lk = 1, · · · , Lk; k = 1, · · · , K).

where ψsij(λ̃
lk
) is referred to equation (6.4). Since δ̄sk

ij ,z̄sk ,x̄sk are known from inspection,

the likelihood function (6.19) are functions of θ(β,φ). Thus, we can apply maximum

likelihood approach to estimate values of θ̂ = (β̂, φ̂). For computational convenience,

we further express likelihood function by means of logarithm:

lnL(θ,Ξ) =
I−1
∑

i=1

I
∑

j=1

K
∑

k=1

Sk
∑

sk=1

δ̄sk

ij π̃
sk

ij (z̄sk , x̄sk : θ). (6.21)

The estimation of θ can be obtained by solving the optimality condition:

∂ lnL(θ,Ξ)

∂θi
= 0, (i = 1, · · · , (I − 1)M + 1). (6.22)

The optimal value of θ̂ = (θ̂1, · · · , θ̂(I−1)M+1) are then estimated by applying a numer-

ical iterative procedure such as Newton Method for the (I − 1)M + 1 order nonlinear

simultaneous equations [52]. Furthermore, estimator for the asymptotical covariance

matrix Σ̂(θ̂) of the parameters is given by

Σ̂(θ̂) =

[

∂2 lnL(θ̂,Ξ)

∂θ∂θ′

]−1

. (6.23)

The ((I − 1)M + 1)× ((I − 1)M + 1) order inverse matrix of the right-hand side of the

formula, composed by the elements ∂2 lnL(θ,Ξ)/∂θi∂θj results to be the inverse matrix

of the Fisher information matrix.

b) Heterogeneity estimation

Information concerning inspection sample sk of pavement group k is denoted as ξsk (sk =

1, · · · , Sk). To describe the condition states of individual sample, the first and second

condition states of sample sk are assumed as i(sk) and j(sk). From subsection 4.4, it

is supposed that the parameter set θ̂ = (β̂1, · · · , β̂I−1, φ̂) is available. If we consider

the distribution of heterogeneity factor εk expressed by function f̄(ε : φ̂), the probabil-

ity density accounting for the transition pattern of each inspection sample ξsk can be
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defined:

ρsk(εk : θ̂, ξk) =
{

πsk

i(sk)j(sk)(z̄
sk , x̄sk : β̂, εk)

}δ̄
sk
i(sk)j(sk) f̄(εk, φ̂), (6.24)

where function f̄(εk, φ̂) follows Gamma function as previously described. Further con-

sideration for the entire sampling population in pavement group k, it is able to expressed

the simultaneous occurrence probability density function concerning heterogeneity fac-

tor εk as

ρk(εk : θ̂, ξk) =
Sk
∏

sk=1

ρsk(εk : θ̂, ξk) ∝
Sk
∏

sk=1

{

j(sk)
∑

l=i(sk)

ψli(sk)j(sk)(λ̃
sk

(θ̂))

exp(−λ̃sk

l (θ̂)εkz̄sk)
}δ̄

sk
i(sk)j(sk)

{

(εk)φ̂−1 exp(−φ̂εk)
}Sk

. (6.25)

The standard or average hazard rate is expressible by means of vector λ̃
sk

(θ̂) = (λ̃sk

1 (θ̂),

· · · ,λ̃sk

I−1(θ̂)). Thus, average hazard rate λ̃sk

i is understood to depend on the parameter

θ̂. To get the explicit form for computation, we further expressed equation (6.25) in

partial logarithm:

ln ρk(εk : θ̂, ξk) ∝
Sk
∑

sk=1

δ̄sk

i(sk)j(sk) ln
{

j(sk)
∑

m=i(sk)

ψli(sk)j(sk)(λ̃
sk

(θ̂))

exp(−λ̃sk

l (θ̂)εkz̄sk)
}

+ Sk

{

(φ̂− 1) ln εk − φ̂εk
}

. (6.26)

Optimal solution to get the value of heterogeneity factor εk (k = 1, · · · , K) can be

evaluated through maximizing equation (6.26) with respect to εk as variable and θ̂ =

(β̂1, · · · , β̂I−1, σ̂) earlier obtained:

max
εk

{

ln ρk(εk : θ̂, ξk)
}

. (6.27)

6.3.4.2 Semi-parametric approach

In this part, the same content of writing like in the section 6.3.4.1 is referred. Changes

are made only to the mathematical notation corresponding to local mixture model. Sub-

stantial change is difference in the properties of unknown pramater θ = (β1, · · · ,βI−1, σ)

for local mixture model following Taylor series instead of θ = (β1, · · · , βI−1, φ) as for

mixture hazard model with Gamma distribution

a) Estimation assumtion

By means of local mixture distribution with Taylor series, we further express the explicit
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form of Markov transition probability:

π̃sk

ii (z̄sk , x̄sk : θ) = e−x̄skβ
′

i
z̄sk{1 +

(σx̄skβ′
iz̄
sk)2

2!
}, (6.28-a)

π̃sk

ij (z̄sk , x̄sk : θ) =

j
∑

l=i

ψlij(λ̃)e−x̄skβ
′

l
z̄sk{1 +

(σx̄skβ′
lz̄
sk)2

2!
}, (6.28-b)

(i = 1, · · · , I − 1; j = i+ 1, · · · , I),

where ψsij(λ̃
lk
) is referred to equation (6.4). Since δ̄sk

ij ,z̄sk ,x̄sk are known from inspection,

the likelihood function (6.19) are functions of θ(β,σ). Thus, we can apply maximum

likelihood approach to estimate values of θ̂ = (β̂, σ̂). For computational convenience,

we further express likelihood function by means of logarithm:

lnL(θ,Ξ) =
I−1
∑

i=1

I
∑

j=1

K
∑

k=1

Sk
∑

sk=1

δ̄sk

ij π̃
sk

ij (z̄sk , x̄sk : θ). (6.29)

The estimation of θ can be obtained by solving the optimality condition:

∂ lnL(θ,Ξ)

∂θi
= 0, (i = 1, · · · , (I − 1)M + 1). (6.30)

The optimal value of θ̂ = (θ̂1, · · · , θ̂(I−1)M+1) are then estimated by applying a numer-

ical iterative procedure such as Newton Method for the (I − 1)M + 1 order nonlinear

simultaneous equations [52]. Furthermore, estimator for the asymptotical covariance

matrix Σ̂(θ̂) of the parameters is given by

Σ̂(θ̂) =

[

∂2 lnL(θ̂,Ξ)

∂θ∂θ′

]−1

. (6.31)

The ((I − 1)M + 1)× ((I − 1)M + 1) order inverse matrix of the right-hand side of the

formula, composed by the elements ∂2 lnL(θ,Ξ)/∂θi∂θj results to be the inverse matrix

of the Fisher information matrix.

b) Heterogeneity estimation

Information concerning inspection sample sk of the road group k is denoted as ξsk (sk =

1, · · · , Sk). To describe the condition states of individual sample, the first and second

condition states of sample sk are assumed as i(sk) and j(sk). From subsection 4.4, it is

supposed that the value of parameter θ̂ = (β̂1, · · · , β̂I−1, σ̂) is available. If we consider

the distribution of heterogeneity factor εk in function f̄(ε : δ̂), the probability density

function, which infers the transition pattern of sample ξsk , can be defined as

ρsk(εk : θ̂, ξk) =
{

πsk

i(sk)j(sk)(z̄
sk , x̄sk : β̂, εk)

}δ̄
sk
i(sk)j(sk) f̄(εk, σ̂), (6.32)
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where function f̄(εk, σ̂) follows local mixing mechanism as previously described. As for

the total number of samples in group k, the probability density function concerning the

simultaneous occurrence of transition can be further defined as

ρk(εk : θ̂, ξk) =
Sk
∏

sk=1

ρsk(εk : θ̂, ξk) ∝
Sk
∏

sk=1

{

j(sk)
∑

l=i(sk)

ψli(sk)j(sk)(λ̃
sk

(θ̂))

exp(−λ̃sk

l (θ̂)εkz̄sk)
}δ̄

sk
i(sk)j(sk)

{

1 +
(σλ̃sk

l z
sk)2

2!

}Sk

. (6.33)

The standard or average hazard rate is expressible by means of vector λ̃
sk

(θ̂) = (λ̃sk

1 (θ̂),

· · · , λ̃sk

I−1(θ̂)). With this assumption, the value of average hazard rate λ̃sk

i depends on

the value of parameter θ̂. To come up with an explicit form of the probability density

function in equation (6.33), we apply partial logarithm as follows:

ln ρk(εk : θ̂, ξk) ∝
Sk
∑

sk=1

δ̄sk

i(sk)j(sk) ln
{

j(sk)
∑

m=i(sk)

ψli(sk)j(sk)(λ̃
sk

(θ̂))

exp(−λ̃sk

l (θ̂)εkz̄sk)
}

+ Skln
{

1 +
(σλ̃sk

l z
sk)2

2!

}

. (6.34)

By maximizing equation (6.34), the optimal value of heterogeneity factor εk (k =

1, · · · , K) can be obtained:

max
εk

{

ln ρk(εk : θ̂, ξk)
}

. (6.35)

6.4 Benchmarking-A Proactive Approach in Infras-

tructure Management

The objective of benchmarking study is to search for the best pavement technology

among the existing alternatives. Based on the methodology proposed in previous sec-

tions, we summarize the road map of benchmarking application in pavement manage-

ment system in Figure 6.2 . It is noted that the technique for cost evaluation is simply

a comparison of construction and repair cost, which is supposed to spend when the

condition state of the road section reaching its absorbing condition state.



Chapter 6. Mixture Hazard Model and Benchmarking Approach 119ÑÒÓÔÒÕÓÒÓ Ö×ØØÙÖÒÚ×ÛÜ ÝÙÔÚÞÚÖÓÒÚ×Ûß àá âãàäá å æçäèãéáæêç áæëãäìíîíï éðàéñæçòï ðóáï áãôáóðãï áðàõõæéöêâóëãï äáðóéáóðàâ á÷æéñçãääïðàöãââæçòï ãáéøù×ÛúÚÒÚ×Û ûÒÓÒÙúÙÞÚÛÚÒÚ×Ûüêçöãðáãý öàâóã õðêëèãðõêðëàçéã æçýãô äóé÷ àäþ íîíïéðàéñæçòøø
ÿÓÔ�×� Ö�ÓÚÛ �×úÙØ�äáæëàáæçò àöãðàòã êð äáàçýàðýáðàçäæáæêç èðê�à�æâæá�ï ÷à�àðý ðàáãàçý ýãáãðæêðàáæêç éóðöãø�çàâ��æçòá÷ã æëèàéá êõ é÷àðàéáãðæäáæéöàðæà�âãä	×ÖÓØ ÿÚ
Ò�ÔÙ ÿ×úÙØ�ôáðàéáæçò ÷ãáãðêòãçãæá� õàéáêð õêðãàé÷ òðêóè êõ ðêàýä

�Ô×�
ÚÛ�üàáãòêðæ�æçò ðêàý äãéáæêçä æçáêöàðæêóä äó��òðêóè � �àäãý êç á÷ãýæõõãðãçéãä æç áãé÷çæéàâ ýãäæòçïëàáãðæàâï äáðóéáóðãï õóçéáæêçàâæá�ïáêèêòðàè÷�ï âêéàáæêçï ãáéø �ÙÛÖ��ÓÔ�ÚÛ� ×��ÙÖÒÚ�Ù����� ������ ��  ���! "# $
% &%'()***)+,

� &�'()***)$, --- ù×ûÒ.�ÓØ�ÓÒÚ×Û
.Ûú

üêçäáðóéáæêç éêäáïëàæçáãçàçéã àçýðãèàæð éêäá
/ãâãéá á÷ã �ãäá áãé÷çêâêò� ßòðêóè �0ì

12 234 56 6 78 9 9 9: :2 23; < => > >: :2 23; < =: :7 7 72 23; < =: :? ? ?2 23; < =
Figure 6.2: Benchmarking Flowchart in PMS

6.5 Empirical study

6.5.1 Overview of empirical study

In this section, we exploit the applicability of the exponential hazard model to estimate

the Markov transition probability. Further, the heterogeneity factor of individual road

group is estimated by using the mixture model. Benchmarking study is highlighted

with the comparison of deterioration curves. Empirical application is conducted on

the monitoring data of the national road system in Vietnam. There are over 10, 000

samples in the database. Each sample represents a road section of 1 km in length.

After verification, a sampling population during the period from 2001 to 2004 with 6510

road sections is selected for the empirical test. Information of monitoring data includes

the values of indexes such as: International Roughness Index (IRI), Cracking, Texture

depth, Thickness of top asphalt layer, Annual traffic volume, etc. The locations of

examined road sections are mapped in Figure 6.3.
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Table 6.1: Description of Condition States.

Condition states Range of IRI values Remark

1 (1-2] Very good
2 (2-4] Good
3 (4-6] Fair
4 (6-8] Poor
5 > 8 Very poor

Note) IRI is measured in (m/km).

In benchmarking study, we consider the deterioration of top surface layers characterizing

by type of materials, technical specification, and regional differences. Whilst, the traffic

volume and texture depth are considered as characteristic variables. A main reason of

the selection is because of having a wide range of choices in the practices of design,

construction, and maintenance in Vietnam. In other words, most of pavement tech-

nologies are borrowed technologies from developed nations, causing a pavement system

of inhomogeneous conditions. The problem of having inhomogeneous conditions in the

national pavement system consequently results in a negative influence on maintenance,

repair, and renovation. The problem has been documented as a major difficulty for

budget allocation either in short or long term strategy.

The original set of monitoring data is filtered and verified in order to define an appro-

priate range of condition states. Verification is necessary since the range of condition

states can be converted in various domains from the value of distress. In fact, the values

of distress such as Roughness, Cracking, Flatness, and Rut are measured and recorded

in a very small scale. Thus, the requirement for defining the range is extremely im-

portant. Based on the results of data verification, we realize that the arrival time to

the worst condition state are in similar behaviors if different range of condition states

are assumed. Hence, for the convenience of observation and computation, we select the

range of condition states from 1 to 5 as detailed described in Table 6.1. The range of

condition states is converted values from the value of IRI.

6.5.2 Estimation results

In the empirical study, we consider the annual traffic volume of motorized car and the

change of texture index as characteristic variables, with denotations as xi2 and xi3.

While, the first characteristic variable xi1 equals to 1 as a constant value. The thickness

of pavement is not considered in the estimation because it shares a similar range of value

in design practices.
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Note) Numbers on the map are the names of national roads.

Figure 6.3: Locations of Roads.

Estimation results using the exponential Markov model are displayed in Table 6.2. It is

highlighted from the table that the traffic volume has a great influence on the transition

of condition state 4. A strong correlation between the transition of the first two condition

states (i = 1, 2) and the texture depth is also realized. As a matter of fact, the change

in the texture depth of road depends on the traffic volume and other environmental

conditions such as climate and construction materials. The figures displayed in the

parenthesis represent the statistical t− test for the values of unknown parameters.

Eventually, we obtain the values of hazard rate and life expectancy for condition state i

through equations (2.30) and (2.31). Results are presented in Table 6.3. It is highlighted

that, in average, the life expectancy of condition state i = 1 lasts less than 1.5 years

before entering into condition state i = 2. Condition states 2 has its service life about

5.5 years. After entering condition state i = 3, the speed of deterioration accelerates

in a fast manner. For instance, condition state 3 remains only about 4.5 years before

falling to condition state i = 4. And further, it takes less than 3.5 years for condition

state i = 4 arriving to the absorbing condition state (i = 5).
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Table 6.2: Estimation Results of Exponential Hazard Model.

Condition Constant Traffic volume Texture depth
states βi1 βi2 βi3

1 0.7987 - -
(46.633) - -

2 0.004 - 1.9633
(0.547) - (21.042)

3 0.225 - -
(29.629) - -

4 0.0849 3.0108 -
(5.8440) (5.9501) -

Note) t− values are shown in the parenthesis.

Table 6.3: Life Expectancy of Condition States.

Condition states E[θi] E[RMDk
i ](years)

1 0.7987 1.2521
2 0.1835 5.4488
3 0.2252 4.4401
4 0.2901 3.4474

Note) The values of hazard rate and life expectancy are not defined for the absorbing condition state
(i = 5) in Markov chain model.

Table 6.4: Markov Transition Probability.

Condition Condition states
states 1 2 3 4 5

1 0.4499 0.4965 0.0495 0.0038 0.0003
2 0.0 0.8323 0.1496 0.0164 0.0017
3 0.0 0.0 0.7983 0.1741 0.0276
4 0.0 0.0 0.0 0.7482 0.2518
5 0.0 0.0 0.0 0.0 1.0

Note) The values of hazard rate and life expectancy are not defined for the absorbing condition state
(i = 5) in Markov chain model.

The matrix of Markov transition probability, estimated by using the exponential Markov

model, is displayed in Table 6.4. The values of transition properties are estimated based

on the value of average hazard rate, which represents the deterioration transition pattern

of the entire road sections. In order to compare the influence of traffic volume on the

deterioration, we carry out the estimations for three cases. The benchmark (BM) case

refers to the case that we estimated the hazard rates and transition probability based

on annual traffic volume. Whilst, other two cases consider the increase and decrease of

annual traffic volume at the rate 0.5. Comparative results of three cases are illustrated

in Figure 6.4.

An appealing conclusion from Figure 6.3 is that the traffic volume particularly exerts
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Figure 6.4: Deterioration Curve.

Table 6.5: Grouping Classification of Roads.

Group Description Technical Speed Road Functional
k class flow class class
1 Bituminous penetrated macadam (226) 60 3+4 1 3
2 Bituminous surface treatment (1301) 60 1+3+4 1+2 3+4+5

3.1 Asphalt concrete (713) 40 4 1 4
3.2 Asphalt concrete (1047) 60 3 2 2
3.3 Asphalt concrete (1030) 60 3 1 3
3.4 Asphalt concrete (467) 60 3 1 4
3.5 Asphalt concrete (602) 60 3 2 3
3.6 Asphalt concrete (1025) 80 3 1 2
3.7 Asphalt concrete (99) 60 4 1 3

Note) Figures in the parenthesis shows number of data. Technical class is defined by maximum al-
lowance speed used in design. Speed flow is categorized in the range (1-single lane with width <=3.5m;
2-3 lanes with width of 10-14.5 m; 3-2 lanes with width of 3.5-5.5 m; 4-2 lanes with width of 5.5-10.5m;
5- 4 lanes with width >= 14m). Road class 1 refers to main tracks of national roads, 2 is supplement
tracks of national roads. Functional class refers to management level [84]. Group 1 and 2 are classified
with a combination of several designated factor.

to have a high impact on condition state 4. In fact, it is true to accept that the traffic

volume should affect all the condition states with different severe levels. However,

in order to understand its behavior precisely, a richer database of monitoring data is

required. Despite the limitation of monitoring data, we are still able to give an alarming

message that the deterioration of the road network in Vietnam is progressing with a

high speed of deterioration. The life expectancy of the surface layer in the network is

relatively less than 13 years. Probabilistically, after about 6 years from construction

time, the serviceability of the road network cannot satisfy the expectation of users.

Thus, it is strongly recommended that Vietnamese road administration should proposes

an extensive investigation to find out the causes of high deterioration speed, and works

out a suitable plan to prolong the service life of the entire road network.
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Figure 6.5: Distribution of Heterogeneity Factors - Parametric Approach.ÅÆÇÈÉ ÅÆÇÉÊ Ê ÆÉË Å ÅÆÌÅÍ ÊÆÈÍË ÊÆÈÎÌ Ê ÆÈÉ Å Ê ÆÉÎÎ ÅÆÊÈÎ
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Figure 6.6: Distribution of Heterogeneity Factors - Semi-parametric Approach).

6.5.2.1 Heterogeneity distribution and deterioration curves

In the benchmarking study, we categorize 6510 road sections into three groups according

to the types of materials. In addition, we further classify the group of asphalt concrete

materials into seven smaller groups based on the technical class, speed flow, road class,

and functional class since this group accounts for a large number of samples in moni-

toring data. Thus, the total number of groups are nine, with the detailed description

explained in Table 6.5. The locations of roads belonging to each group are also high-

lighted in Figure 6.2. Estimation results for heterogeneity factor of individual group by

employing both parametric and semi-parametric approaches are also given in Figure 6.4

and Figure 6.5.

Comparisons of deterioration curves are drawn in Figure 6.7 with parametric approach

and in Figure 6.8 with semi-parametric approach. The figures shows the deterioration

curves of roads based on 3 types of materials. The group of roads with asphalt overlays

has a longest service life (about 16 years). Meanwhile, the two other groups of roads

with materials composing of bituminous penetrated macadam and bituminous surface

treatment have their service life less than 9 years. Since asphalt concrete becomes a

popular material for overlay, most of national roads are now paved with asphalt concrete.
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Figure 6.8: Deterioration Curves - 3 Types of Road Materials - Semi-parametric
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Figure 6.9: Deterioration Curves-9 Groups - Parametric Approach.

Thus, we further classified the group of asphalt concrete into 7 sub-groups and compared

their deterioration curves. In total, there are nine groups of roads for benchmarking.

Figure 6.9 and Figre 6.10 presents the a comparative view on the deterioration curves

of 9 groups. It is realized that deterioration curves of asphalt concrete surfaces has a

small dispersion in compare with other groups. Relatively, the life expectancy of asphalt

concrete surfaces ranges from 12 to 16 years.

According to the climate zones of Vietnam, road sections with asphalt concrete overlay
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Figure 6.11: Deterioration Curves-regional Perspective (6 regions) - Parametric
Approach.�����
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Figure 6.12: Deterioration curves-Deterioration Curves - Regional Perspective (6
regions) - Semi-parametric Approach.

are classified into 6 regions. The location of each region is also displayed in the map of

Figure 6.3. A comparative view of the deterioration curves of asphalt roads according to

regional classification are illustrated in Figure 6.11 and Figure 6.12. As can be seen from

two figures, it is proved that the deterioration of road surfaces in the southern part is

faster than that of road surfaces in the northern regions. This reason could possibly due

to the effects of soft ground condition in the southern part of Vietnam or the impact of

flooding in low land areas. The two prominent reasons are strongly believed to cause the
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subsidence of construction works in the southern part of the country. The deterioration

of road surfaces in the north part of the country has a slower speed than the that of the

other regions. Moreover, it is also found that that deterioration speed of road surfaces

in urban areas is faster than that in the highland regions. The faster deterioration speed

in the urban areas is due to the effects of heavier traffic volume annually.

Throughout the analysis and comparison of estimation results as presented in the above

figures, it is realized that the there exists variations of estimation results between two

methodologies (Parametric and Semi-parametric). However, the variations are observed

in a small scale. Thus, the two approaches can be supplementary used for each other in

order to improve the quality of estimation.

6.5.2.2 Cost Evaluation

In view of economic evaluation, a simple cost evaluation technique is applied. We

assumed that whenever the condition state of a road section reaching the absorbing state

(i = 5), renewal will be implemented. The total cost is a summation of construction cost

and renewal cost for renewing the overlay. With this assumption, the average cost of

construction and renewal for each type of road surface according to its material can be

estimated, simply by calculating the ratio of its total cost to its average life expectancy.

The results of cost estimation are presented in Table 6.6. The results highlight the

fact that higher benefit can be earned if the asphalt concrete overlay is applied instead

of applying the bituminous penetrated macadam and bituminous surface treatment

overlays. A significant difference in the life expectancy and average cost within the

group of asphalt concrete material is also realized from the estimation results in Table

6. Based on the obtained results, the best type of overlay for long term application can

be recommended. For example, group 3.1 in Table 6.6 is considered as the best one in

term of economic perspective.

6.6 Summary and Recommendations

This chapter has proposed a mixture model for benchmarking study. The mixture

model is expressed by means of heterogeneity factor ǫ that exists in each group of roads.

The heterogeneity factor is considered to follow the Gamma distribution (Parametric

approach) and the function of Taylor series (Semi-parametric approach). In order to

estimate the heterogeneity factor, two steps estimation approach with maximum like-

lihood estimation method is applied. The mixture hazard model is considered as an
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Table 6.6: Average Cost Evaluation.

Group Renewal Service Average
k cost life (years) cost

1 8,567 7.64 1,121
2 8,929 7.72 1,157

3.1 11,754 17.38 676
3.2 11,754 10.61 1,108
3.3 11,754 15.09 779
3.4 11,754 14.45 814
3.5 11,754 14.79 795
3.6 11,754 16.12 729
3.7 11,754 11.84 993

Note) Monetary unit is 1000 thousand Vietnamese dong. Unit cost is referred to the standard

norm cost defined by Hanoi construction bureau [85, 86]. Cost is estimated for 100 m2 and 5

cm in its thickness of road.

excellent tool for benchmarking study, which is used to search for the best technology

in the pavement management system. In view of practical application, the methodology

is suitable to apply in the pavement management system of developing countries like

Vietnam, where has a high demand of standardization in the pavement system.

To demonstrate the applicability of the model, we conducted an empirical study on

a database of Vietnamese pavement system collected during the years 2001 and 2004.

The technological groups were classified according to the types of materials and regional

zones. The estimation results revealed a fact that the speed of deterioration of roads in

Vietnam is very fast. Approximately 10 years after construction, the condition states

of road surfaces reach the worst condition state. The main cause leading to the fast

deterioration is because of the high intensity of annual traffic volume. Furthermore,

estimation results prove that the performances of road surfaces with asphalt concrete

are much better than that of the road surfaces with bituminous penetrated macadam

and bituminous surface treatment. Based on a simple cost evaluation technique, the

empirical study also recommended a best group of road surfaces with asphalt concrete

for long term application.

However, we have not discussed several points, which will be considered as topics for

extending this study in the future:

• The benchmarking study focused only on the pavement management system. How-

ever, its application can be applied to other types of infrastructure.

• This chapter proposed only a simple cost evaluation technique, which does not

considered the routine maintenance and repair actions. In order to overcome this
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limitation, a cost evaluation technique using the theory of Markov decision process

should be applied in the future extension of the model.

• This chapter has not discussed the problem of measurement errors in monitoring

data, which is one of the main reason causing the bias in estimation results. A

future study shall consider the theory of hidden Markov models, Bayesian estima-

tion, and Markov Chain Monte Carlo into account.

• The empirical study of this chapter just focused on a small scale application of

benchmarking methodology on the pavement system in Vietnam, particularly fo-

cusing on the types of materials and regional zones. However, in order to find

out the best pavement technology and to propose a feasible solution to the prob-

lems of pavement system in Vietnam, a better quality monitoring data shall be

accumulated.

• In the empirical study, we considered only the annual traffic volume as a time-

invariant characteristic variable. However, in reality, the intensity of annual traffic

volume is always dynamic and change with time. Therefore, it is recommended

that future extension of the study shall consider the traffic volume as a time-variant

characteristic variable.





Chapter 7

Conclusions

7.1 A Brief Summary

This dissertation has presented two major research directions in the field of infrastruc-

ture asset management, the development of innovative mathematical models based on

Markov chain theory and the development of methodologies based on the derivatives of

hazard models for optimization of infrastructure system. The development of models

in the first direction provided a solid background for the second direction in extending

and applying hazard models to solve the problems in the real situations.

In the first direction, the study encompassed the formation of two innovative mathemat-

ical models, which are used mainly for forecasting purposes. The first model deals with

the system of multi-condition states, where the hazard rate is subjected to be influenced

by the entire historical data. To cope with this requirement, we introduced the Weibull

hazard function as a basic characteristic function of deterioration process. The second

model addressed the measurement errors in database system and further proposed a hid-

den Markov method to eliminate the errors so as to produce a closer deterioration curve

to the real one. In hidden Markov model, we introduced the application of Bayesian

updating rule and Markov Chain Monte Carlo, which are believed to greatly contribute

to the academic researches in the field.

The second direction targeted mainly on development of methodologies to apply deriva-

tive hazard models, which have already been extensively discussed in literature review

and in the first direction, for management purposes. There were two extended hazard

models being proposed. The first hazard model was the optimal renewal timing model

based on least life cycle cost evaluation technique, which was found to be applicable

to underground infrastructure system. The second model was mixture hazard model,
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which is regarded as an important derivative of Markov chain model, is applied within

the framework of benchmarking application.

Each presented models were then tested through the empirical application on the database

of targeted infrastructure systems such as: tunnel facility, water pipeline distribution

network and pavement system in either Japan or Vietnam. Details of the problems,

motivations for formulation of models and results of empirical studies have been given

in respective chapters of this dissertation. Despite the differences in the titles of chap-

ters and empirical applications, all four presented models from Chapter 3 to Chapter 6

exhibit a close link to each other in term of stochastic estimation. Evidently, the link

can be easily recognized through the definition and description of hazard rate, Weibull

or exponential hazard functions and the conventional Markov chain model.

7.2 Conclusions

In a nutshell, some brief concluding points are highlighted as follows

• Stochastic models using the Markov chain can give optimal solutions under the

managerial requirements for infrastructure management at network level. Deriva-

tive models in this streamline could be applicable for various types of infrastructure

systems beside pavement management system or tunnel lighting utilities.

• The model with multi-stage Weibull hazard functions can greatly improve the

quality of deterioration forecasting in comparison with conventional Markov chain

model. Precisely under the circumstance that the entire historical performance of

infrastructure is considered (Chapter 3).

• Measurement errors, which are often embedded in the infrastructure inventory

system, can be eliminated if hidden Markov model is applied (Chapter 4).

• For underground infrastructure facilities, management finds its possibility to ac-

tually implement optimal renewal scheme based on stochastic forecasting model

and life cycle cost analysis. Furthermore, a switching rate between technologies,

either by means of time or cost, can be possibly visualized under the course of

technology innovation (Chapter 5).

• Mixture hazard model is suitable methodology for estimation of heterogeneity

factors, which characterizes the inhomogeneous attributes of infrastructure system

comprised of many sub or branch categories. Especially, mixture model has been
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proved to be a suitable managerial tool for benchmarking study in developing

countries (Chapter 6).





Appendix A

Appendix A

Solution to Gamma function in the equation of life cycle cost J(0, z)

J(0 : z) =
(c+ I)Γ(z) + IΛ(z)

1 − Γ(z) − Λ(z)
(A.1)

Where Γ(z) and Λ(z) functions are defined as follow (without considering the risk factor

since it is not of neccessity to represent for general calculation):

Γ(z) =

∫ z

0

f(t) exp(−ρt)dt

=

∫ z

0

αmτm−1 exp(−ατm − ρt)dt (A.2)

Λ(z) = F̃ (z) exp(−ρz)

= exp(−αzm − ρz) (A.3)

Gamma function in equation (A.2) can be extended in the following way

Γ(z) =

∫ z

0

(αmτm−1 + ρ− ρ) exp(−ατm − ρt)dt (A.4)

⇔ −

z
∫

0

exp(−αtm − ρt)d(−αtm − ρt)

−ρ

z
∫

0

exp(−αtm − ρt)dt

= 1 − Λ(z) − ρ

Z
∫

0

exp(−αtm − ρt)dt (A.5)
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The denominator in equation (A.1) becomes

1 − Λ(z) − Γ(z) = ρ

z
∫

0

exp(−αtm − ρt)dt (A.6)

Subtitute equations (A.5) and (A.6) into (A.1), following results are obtained

J(0, z) =
(C + I) [Γ(z) + Λ(z) − 1] + C + I − CΛ(z)

1 − Λ(z) − Γ(z)
(A.7)

=
C + I − CΛ(z)

ρ
z
∫

0

Λ(t)dt

− (C + I) (A.8)

Here, we have to solve the integration of function Λ(z). The general form of expanding

the integration into following discrete series will be accepted.

Ik =

kdt
∫

0

f(x)dx (A.9)

Here, k is number of iteration and dt is the very small amount of time. For example,

value of d can becomes d = 0.01 or 0.001 or even smaller.

Ik+1 =

(k+1)dt
∫

0

f(x)dx (A.10)

= Ik +

(k+1)dt
∫

k.dt

f(x)dx (A.11)

= Ik +
[f(kdt) + f{(k + 1)dt}]dt

2
(A.12)

To this point, the value of integration can be easily estimated by numerical calculation.

We subtitute equation (A.8) and use Newton method to estimate for the minimum value

of J(0, Z) with respect to the increasing number of year Z.

Beside this method, the Simpson rule for solving integration can also be applied. How-

ever, a comparison with various small values of d proves that the above method is

sufficient enough in satisfying the objective of chapter 5.
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