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Abstract:Many bridge management systems use Markov models to predict the future deterioration of structural elements. This informa-
tion is subsequently used in the determination of optimal intervention strategies and intervention programs. The input for these Markov
models often consists of the condition states of the elements and how they have changed over time. This input is used to estimate the prob-
abilities of transition of an object from each possible condition state to each other possible condition state in one time period. A complica-
tion in using Markov models is that there are situations in which there is an inadequate amount of data to estimate the transition
probabilities using traditional methods (e.g., due to the lack of recording past information so that it can be easily retrieved, or because it
has been collected in an inconsistent or biased manner). In this paper, a methodology to estimate the transition probabilities is presented
that uses proportional data obtained by mechanistic-empirical models of the deterioration process. A restricted least-squares optimization
model is used to estimate the transition probabilities. The methodology is demonstrated by using it to estimate the transition probabilities
for a reinforced concrete (RC) bridge element exposed to chloride-induced corrosion. The proportional data are generated by modeling
the corrosion process using mechanistic-empirical models and Monte Carlo simulations. DOI: 10.1061/(ASCE)BE.1943-5592.0001101.
© 2017 American Society of Civil Engineers.
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Introduction

In many existing bridge management systems (BMS) the deteriora-
tion of reinforced concrete (RC) bridge elements is modeled using
Markov models. Markov models are stochastic models that define
the space of the physical condition of the elements into a range of
discrete condition states. The transition probabilities used in this
type of model can be developed with little effort, using the results of
time-ordered visual inspections, which are regularly conducted and
stored in databases, or will be regularly conducted in the future.

Existing data involving time-ordered detailed changes, however,
are often suitable for the estimation of transition probabilities.
There are numerous reasons for this including (1) lack of data
because past inspection results were not archived, (2) inconsistent
data in time due to inconsistently conducted monitoring programs,
(3) biased data due to the lack of strict guidelines for the inspector,
and (4) data with measurement errors due to faulty measurement
equipment. If existing data cannot be used, one often relies on
expert opinion. The poor estimation of transition probabilities, how-
ever, affects the prediction of the future condition of bridge ele-
ments, which in turn can affect the determination of the optimal

intervention strategies for the elements and, therefore, the develop-
ment of the intervention programs to be implemented.

Despite progressive development in the field of monitoring over
the last decades so that data can be collected more frequently and
more accurately, the previously described four reasons are still per-
tinent problems widely seen in practice. They are especially perti-
nent in developing nations, in which there is too little attention paid
to managing infrastructures, including a vast number of concrete
bridges. Many concrete infrastructures built in the last decades are
in poor condition due to a lack of regular maintenance and retrofit-
ting, and monitoring. Infrastructure managers in those situations are
making strategic decisions purely based on mechanistic-empirical
models, whose parameter values can be determined at a single time
when required.

To overcome this shortcoming, a methodology has been devel-
oped to estimate the transition probabilities based on aggregated
and proportional sample data. Proportional sample data is data in
which only the proportion of the elements analyzed in each state at
discrete times are known. There is no information on the time path
behavior of each individual element.

The methodology estimates transition probabilities using pro-
portional sample data generated using mechanistic-empirical mod-
els. The term mechanistic-empirical here refers to a combination of
a mechanistic model, which is based on physical behaviors of the
elements, and an empirical model, which is based on direct observa-
tions, measurements, and extensive data records. The model is used
to develop the transition probabilities for the RC bridge element
that is affected by chloride-induced corrosion.

The remainder of the paper is organized as follows. In the fol-
lowing section a short background of Markov and mechanistic-
empirical models is given to help situate the reader. The methodol-
ogy, with a focus on the restricted least-squares transition proba-
bility estimator, is presented next. Afterward, an example is given
using the methodology. Finally, a summary of the work and sugges-
tions for future work in this area are given.
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Background

Markov Models

TheMarkovmodel discussed can be characterized by the following:
1. There are a finite number of possible outcomes (e.g., condi-

tion states) i (i = 1,2,…,I), which are discrete random varia-
bles Xt (t = 0,1,2,…,T), taking a finite number of equidistant
time points t in a sample space.

2. The probability distribution of an outcome of a given point in
time depends only on the outcome of the previous point in time

P Xt ¼ xtjXt�1 ¼ xt�1;Xt�2 ¼ xt�2;…ð Þ
¼ P Xt ¼ xtjXt�1 ¼ xt�1ð Þ 8t (1)

where P Xt ¼ xtj…ð Þ denotes the conditional probability density
function for Xt.
1. The assumption that if Xt-1 = i and Xt = j, then

P Xt ¼ jjXt�1 ¼ ið Þ ¼ p ij tð Þ ¼ p ij 8t (2)

where p ij = constant transition probability associated with a change
from state i to state j. These transition probabilities p ij can be
arranged as a transition probability matrix P, reflecting every pair
of states i, j (i,j = 1,2,…,I).

When inspection data have been collected at constant time inter-
vals, the estimation of the transition probabilities can be a straight-
forward process, e.g., the division of the number of transitions
between states by the total number of states. However, when data
have been collected at nonconstant time intervals, a statistical
approach, such as the likelihood estimation approach or Bayesian
approach, can be used (Tsuda et al. 2006; Kobayashi et al. 2012;
Lethanh et al. 2015b).

When data have not been collected in sufficient quality or quan-
tity to accurately estimate the transition probabilities, they are often
estimated, at least in practice, using expert opinion. When using
the unreliable transition probabilities, errors in the estimation of the
condition evolution of the elements are likely to incur. Because the
condition evolution of elements is important in the estimation of
intervention strategies and intervention programs (Walbridge et al.
2013; Fernando et al. 2015; Lethanh et al. 2015a), using unreliable
transition probabilities might lead to under- and overestimation of
necessary budgets, and this problem should be avoided. Under those
circumstances, determining reliable transition probabilities from
mechanistic-empirical models offers a way to improve these
estimates.

Mechanistic-Empirical Models

Mechanistic-empirical models are used extensively to estimate the
deterioration of engineering elements. Examplemodels for concrete
elements are those developed by DuraCrete (1999, 2000a, b), VTT
Technical Research Centre of Finland (2003), fib (2006), or Life-
365 Consortium III (2013). These models are usually developed
with a solid understanding of the physical processes at work in the
RC elements, insights provided by laboratory or in situ tests, and
data collected to evaluate the actual state of the element.

Mathematically, mechanistic-empirical models are defined as
functions of sets of parameters. For example, a model of the deterio-
ration of an RC element may include the level of chloride Ccl, initial
level of chloride ion concentration Cs, the distance xcl from the con-
crete surface, and chloride diffusion coefficient Dcl (Kirkpatrick et
al. 2002)

Ccl xcl; tð Þ ¼ Cs 1� erf
xcl

2
ffiffiffiffiffiffiffiffiffiffiffi
Dcl � t

p
� �� �

(3)

where erf[·] = error function.
When the values of parameters are determined, the continuous

evolution of a deterioration indicator (e.g., level of chloride) over
time can be estimated deterministically. To include the uncertainty
in prediction, probabilistic distributions (e.g., normal distribution,
lognormal distribution) are normally used to represent the parame-
ters of models, and Monte Carlo simulations are run using different
values of the parameters drawn from these distributions.

Transition Probabilities Based onMechanistic-
Empirical Models

When mechanistic-empirical models are used to estimate transition
probabilities, a decision has to be made about how to determine if
there is indeed a good fit with deterioration predicted using the
resulting Markov model and the deterioration predicted using the
mechanistic-empirical model. One of the first works in the area is
that of Roelfstra et al. (1999, 2004) who assumed that each element
could transition no more than one condition state per unit of time
and obtained a best fit using the least-squares estimation approach.
The best fit was determined for conditional vectors at 100, 150, and
200 years. The validity of the assumption of not transitioning more
than one state in one unit of time depends on the speed of deteriora-
tion, but it is an assumption made by many researchers (Jiang et al.
1988; Al-Subhi et al. 1989; Mishalani and Madanat 2002; Robelin
and Madanat 2007) and used in the past for the estimation of transi-
tion probabilities for use in BMS, such as Pontis 4.1 (Golabi and
Shepard 1997; Soderqvist and Veijola 1998; Thompson et al. 1998,
1999; FHWA 2002) and Kuba-MS 5.1 (Hajdin 2003, 2006).
However, obtaining the transition probabilities using only one
single point in time to minimize the errors led to a divergence
between the deterioration curves obtained with Markov chains
and the ones obtained by mechanistic-empirical modeling.

Another way to establish a best fit between the models is to mini-
mize the errors between the probability of being in each state in each
time interval in the investigated period predicted using the Markov
model and the mechanistic-empirical model, instead of just in one
period of time. Although computationally more intensive, this could
yield more detailed and better approximations of the future behavior
of the elements. This can be done by first estimating the probable
values of the deterioration indicators, such as level of chloride con-
centration or the crack width, in each time interval throughout the
investigated time period. These can then be summarized as a state
vector, i.e., at time t there is a probability of being in each state i,
which is referred to as proportional data (Lee et al. 1972), and then
estimating the transition probabilities using these state vectors.

Although the use of proportional data to estimate transition prob-
abilities has not been used in the field of bridge management, there
has been substantial early work in the fields of econometric and
financial engineering (Lee et al. 1972). As summarized in Lee et al.
(1970), it started in the 1950s when Miller (1952) proposed a dis-
crete Markov process in psychology. He defined a stochastic rela-
tion formulation as a basis for describing a linear statistical model
for estimating the transition probabilities from proportional data
using an unrestricted least-squares transition probability estimator.
Later, a restricted least-squares transition probability estimator was
developed by Goodman (1953). Since then, there has been a signifi-
cant amount of research done on improving the estimation of transi-
tion probabilities. Many of these have concentrated on the use of
the maximum likelihood estimation and Bayesian estimation

© ASCE 04017063-2 J. Bridge Eng.
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approaches using examples from different fields (Lee et al. 1972;
Lancaster 1990; Kobayashi et al. 2012).

Methodology

The tasks used to estimate the optimal transition probabilities based
on proportional data generated by mechanistic-empirical models
include the following: (1) select or develop mechanistic-empirical
models, (2) estimate parameter values, (3) define condition states,
(4) generate values of condition indicators over time, (5) aggregate
probable condition states in each time interval, (6) estimate transi-
tion probabilities, and (7) evaluate results and the value of error
terms.

This methodology is illustrated in Fig. 1 and explained in more
detail in the following sections. Particular attention is given to Task
6, the estimation of the transition probabilities.

Task 1: Select or Develop Mechanistic-Empirical Models

The deterioration process of concrete elements due to reinforcement
corrosion is commonly described in two phases, initiation and prop-
agation (Tuutti 1982).
1. During the initiation phase the RC structure is exposed to envi-

ronmental and mechanical effects. The penetration of chloride
ions and carbon dioxide into the concrete can lead to steel cor-
rosion when the penetration front reaches the critical depths
considering the embedded reinforcement. If the onset of corro-
sion has occurred, the initial phase ends and the propagation
phase starts.

2. During the propagation phase the process of corrosion pro-
ceeds, which leads to a reduction in the reinforcement cross
section and the accumulation of corrosion products (rust). The
reduction of the cross section affects the capacity of the RC
structure, which may lead to structural failure. The expanded
volume of corrosion products may cause cracking and spalling
of the covering concrete.
Several mechanistic-empirical models have to be used to

describe the complex physical phenomena of chloride-induced cor-
rosion. For the methodology presented in this paper, current state-
of-the-art models for the concrete deterioration are used, consider-
ing the following elements:
• A probabilistic model for chloride penetration based on Fick’s

second law of diffusion [Eq. (3)]
• A simplified model for corrosion propagation, based on cross-

section loss

P tð Þ ¼
ðt
0
Vcorr � a � wt � t � dt (4)

where Vcorr = corrosion rate coefficient (millimeters per year);
wt = wet period in a year (i.e., the fraction of the year that

corrosion is active); anda = pitting factor that takes nonuniform
corrosion of the reinforcement bars into consideration.

• A crack model, which takes the section loss into account

w tð Þ ¼ w0 þ b P tð Þ � P0½ � (5)

wherew(t) = crack width (millimeters) over time; b = parameter
that controls the propagation;w0 = crack width when it is visible
(� 0.05 mm); P0 = amount of loss of reinforcement bar diameter
(millimeters) when crack width is visible; and P(t) = amount of
loss of the reinforcement bar diameter (millimeters) at time t.

Task 2: Estimate Parameter Values

The deterioration process of concrete is closely related to the envi-
ronment. For example, the risk of chloride-induced corrosion is
higher in coastal environments than in the interior of the country. In
mechanistic-empirical models (environmental) parameters are used
as an initial condition for the deterioration models. In this context,
the user of the model has to decide which assumption is accurate
for the present situation, e.g., if the element is directly exposed to
rain, the concrete can have a high level of relative humidity.
Measurements are helpful here in reducing uncertainty. Service life
models, such as DuraCrete (2000b), provide valuable information
about the durability characteristics of concrete structures and envi-
ronmental parameters.

Task 3: Define Condition States

In existing BMS, the condition states are described both qualita-
tively and quantitatively and illustrated by images and drawings.
Unfortunately, there is little connection from these condition states
and the structural behavior of the elements. One of the purposes of
BMS, however, is to plan and suggest interventions to execute
before any significant impairment of the bridge occurs. In this
sense, the purpose of a condition assessment is to serve as a basis
for planning of interventions, and the condition states should fit
these needs (Roelfstra et al. 2004). This means that condition states
are found keeping in mind the purpose of the BMS, and the condi-
tions predicted using mechanistic-empirical models need to be
mapped to them.

Task 4: Generate Values of Condition Indicators
over Time

Based on the mechanistic-empirical models [Eqs. (3–5)] and their
parameter values, condition indicators can be randomly generated
by Monte Carlo simulations. The parameter values need to be set
taking into consideration the environment of the element. For exam-
ple, if the concrete cover depth is measured with a thickness of
25 mm and the exposure is observed to be a splash zone, the deterio-
ration rate of the considered element can be adjusted to these input
parameters.

Fig. 1. Methodology
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Task 5: Aggregate Probable Condition States in Each
Time Interval

After sampling, the values of condition indicators form the
mechanistic-empirical models aggregated to obtain the proportions
of each condition state i for each time period t – 1 to t. These propor-
tions, referred to as observed proportions j j tð Þ (j = 1,2,…,I), are
used in the next task to estimate the transition probabilities.

Task 6: Estimate Transition Probabilities

Assuming that only aggregated sample data (e.g., from mechanistic-
empirical models) are available, the transition probabilities can be
estimated using the previous notation as follows:

P Xt�1 ¼ i;Xt ¼ jð Þ ¼ P Xt�1 ¼ ið ÞP Xt ¼ jjXt�1 ¼ ið Þ (6)

respectively

P Xt ¼ jð Þ ¼
X
i

P Xt�1 ¼ ið ÞP Xt ¼ jjXt�1 ¼ ið Þ (7)

or

t j tð Þ ¼
X
i

t i t � 1ð Þp ij (8)

where t j tð Þ and t i t � 1ð Þ = true probabilities, which cannot be
observed due to a lack of data. By replacing the true values in Eq.
(8) with the observed proportions j j tð Þ and j j t � 1ð Þ, the following
stochastic relationship can be observed:

j j tð Þ ¼
X
i

j i t � 1ð Þp ij þ ɛj tð Þ (9)

where ɛj tð Þ ¼ j j tð Þ � t j tð Þ is an error term, which accounts for the
difference between the actual and estimated occurrence of j j tð Þ. By
minimizing the error term ɛj tð Þ ! 0, the best estimate of the actual
probabilities can be found.

Following the work of Lee et al. (1972), Eq. (9) can be rewritten
in a standard matrix representation:

n ¼ Npþ e (10)

or

n1
n2

..

.

nI

2
6664

3
7775 ¼

N1 0 � � � 0
0 N2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � NI

2
6664

3
7775

p1
p2

..

.

pI

2
6664

3
7775þ

e1
e2

..

.

eI

2
6664

3
7775 (11)

where nj = T� 1 vector of sample points; pj ¼ p 1j;p 2j;…;p Ij;½ � =
I� 1 vector of unknown transition parameters to be estimated; ej =
T� 1 error vector withE ej½ � ¼ 0; andNj = T� Imatrix with

Nj ¼

j 1 0ð Þ j 2 0ð Þ � � � j I 0ð Þ
..
. ..

. ..
.

j 1 t � 1ð Þ j 2 t � 1ð Þ � � � j I t � 1ð Þ
..
. ..

. ..
.

j 1 T � 1ð Þ j 2 T � 1ð Þ � � � j I T � 1ð Þ

2
66666664

3
77777775

(12)

Using the conventional least-squares estimator as a basis for
obtaining the estimates of the transition probabilities yields the fol-
lowingminimization problem:

bb ¼ eTe ¼ n� Npð ÞT n� Npð Þ (13)

subjected to X
j

p ij ¼ 1 8i (14)

p � 0 (15)

p ij ¼ 0 8i > j (16)

Eq. (14) represents the row sum condition. To ensure that the
probabilities per condition state sum up to 1, the nonnegative condi-
tion in Eq. (15) allows only positive values, and Eq. (16) ensures
that the condition states can only get worse, and not better.

Task 7: Evaluate Results

Finally, obtained transition probabilities are examined to ensure that
they are optimal. This can be done using the total sum of error terms
for all condition states, and for each condition state at any particular
point in time. Along with the error term check, visual inspection on
duration of time staying in each condition state and distribution of
each condition state over time can also be performed. Ideally, it is
expected that the set of transition probabilities resulting in the mini-
mum value of the total sum of error terms compared with that of
other sets is the optimal one.

Example

The methodology is demonstrated by using it to determine the tran-
sition probabilities of an RC bridge deck exposed to chloride-
induced corrosion. It is assumed that the chloride concentration and
the crack width are the essential condition indicators.

Task 1: Select or Develop Mechanistic-Empirical Models

The current state-of-the-art models for the concrete deterioration
were used, and the initiation and propagation models proposed by
DuraCrete (2000b) were used.

To model the initial phase of the corrosion process, Eq. (3) was
used as a base. This mechanistic-empirical model has the advantage
that parameters, such as the diffusion coefficient, can be expanded
as functions of other parameters. This allows one to approximate
the environmental condition of the element in a more realistic man-
ner. According to DuraCrete (2000b)Dcl can be defined as

Dcl ¼ Dcl t0ð Þ � t0
t

� �n

¼ ke � kt � kc � D0 � t0
t

� �n

(17)

where ke = environmental parameter; kt = test method parameter;
kc = executions parameter;D0 = empirical diffusion coefficient; t0 =
reference time; and n = age factor.

To model the propagation phase, the mechanistic-empirical
models for the cross-section loss [Eq. (4)] and the crack width [Eq.
(5)] were used. Similar to the diffusion coefficient in the initiation
phase, the amount of lost cross section when the crack initially
occurred (P0) can be described, taking the environment into account

© ASCE 04017063-4 J. Bridge Eng.
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P0 ¼ a1 þ a2 � dc=f þ a3 � ft;spl (18)

where a1, a2, and a3 = regression parameters; dc = concrete cover
depth; f = diameter of the reinforcement bar; and ft,spl = tensile
splitting strength.

Task 2: Estimation of Parameter Values

Each parameter of Eqs. (3)–(5), (17), and (18) can be expressed as a
random variable depending on the location (e.g., located in coastal
areas or not); environment, such as the exposure zone (e.g., sub-
merged, tidal, splash, for a coastal location and dry or wet for an
inland location); the curing time; the water-cement ratio; and the
concrete type of the element.

For illustration purposes the following assumptions about the
element were made:
• The bridge was located in Switzerland (inland).
• A portland cement with a water-cement ratio of 0.4 was used.
• The curing time was 7 days.
• The element was located in a wet environment, i.e., parts of

the element could be exposed to rain.
• Concrete cover depths (dc) of 15, 25, and 35 mm were

evaluated.

The corresponding distributions and parameters are documented
in Tables 1 and 2 based on DuraCrete (2000b), in which other side
specific parameters are also listed.

Task 3: Define Condition States

Five condition states were defined (Table 3), corresponding to the
chemical and physical criteria described by the mechanistic-empirical
models. A segment in Condition State 1 was defined as having
less than 0.24% by weight chloride ion content, which was
equal to the surface concentration. Condition State 2 was
defined as having a chloride ion concentration of less than
0.48% by weight at the surface of the reinforcement. This rep-
resented a contaminated concrete and the transition from the
initiation to the propagation phase, in which 0.48% by weight
defines the critical chloride concentration Ccrit and the depassi-
vation of the steel surface begins. Condition States 3–5 were
defined in terms of the crack width. In State 3 corrosion has al-
ready started; however, time is necessary for the crack to reach
the surface. Cracks on the surface can be visually detected for
elements in Condition State 4. An element in Condition State 5
has crack widths larger than 0.5 mm, which indicates that
safety may be a problem.

Task 4: Generate Values of Condition Indicators

Based on the chosen mechanistic-empirical models and their pa-
rameters, 20,000 simulations of each condition indicators Ccl and w
in each year in a period of 100 years were performed. A Monte
Carlo approach was used to generate the data. It was assumed that
the variables were uncorrelated.

Table 1. Input Parameters for the Initiation Phase

Parameter Distribution m s Tablea

D0 Normal 220.752 25.41 8.2
Cs Lognormal 0.24 0.16 8.6
ke Gamma 0.265 0.045 8.4
kt Normal 0.832 0.024 8.8
kc Deterministic 1 — 8.7
t0 Deterministic 0.0767 — 8.13
n Beta 0.37 0.07 8.3

aData from DuraCrete (2000b).

Table 2. Input Parameters for the Propagation Phase

Parameter Distribution m s Tablea

w0 Normal 0.05 0.005 —

b Normal 0.0086 0.005 9.16
Vcorr Weibull 0.03 0.04 9.3
wt Normal 0.75 0.2 9.3
a Normal 9.28 4.04 9.2
a1 Normal 74.4 5.7 9.16
a2 Normal 7.3 0.06 9.16
a3 Normal –17.4 3.2 9.16
f Deterministic 20 — —

ft,spl Deterministic 2.6 — —

aData from DuraCrete (2000b).

Table 3. Definition of the Condition States

Phase CS Description Indicator Criteria

Initiation s1 New/partial new concrete contaminated Chloride concentration at the reinforcement bar 0 ≤ Ccl ≤ 0.24
s2 0.24 ≤ Ccl ≤ 0.48

Propagation s3 Corrosion has initiated, no visible cracking Crack width Ccl> 0.48, w ≤ 0.25
s4 Visible cracking has occurred 0.25<w ≤ 0.5
s5 Visible cracking has occurred and cover has spalled w> 5

Note: CS = condition states.

Table 4. First 15 Years of Aggregated Data from the Simulation of
20,000 Individuals per Year

t s1 s2 s3 s4 s5

1 1.0000 0.0000 0.0000 0.0000 0.0000
2 1.0000 0.0000 0.0000 0.0000 0.0000
3 0.9999 0.0001 0.0000 0.0000 0.0000
4 0.9980 0.0020 0.0000 0.0000 0.0000
5 0.9901 0.0099 0.0000 0.0000 0.0000
6 0.9748 0.0249 0.0003 0.0000 0.0000
7 0.9518 0.0470 0.0012 0.0000 0.0000
8 0.9185 0.0786 0.0030 0.0000 0.0000
9 0.8801 0.1135 0.0064 0.0000 0.0000
10 0.8357 0.1515 0.0127 0.0001 0.0000
11 0.7908 0.1900 0.0188 0.0003 0.0000
12 0.7463 0.2260 0.0269 0.0007 0.0001
13 0.7032 0.2588 0.0366 0.0013 0.0002
14 0.6627 0.2884 0.0462 0.0023 0.0005
15 0.6243 0.3118 0.0593 0.0038 0.0009
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Task 5: Aggregate Probable Condition States in Each
Time Interval

To obtain the set of proportional data, the values obtained from the
simulations were used to classify the simulation as having generated
a discrete condition state. To calculate the observed proportions at
any time t, the values of chloride concentration Ccl and the crack
width w were evaluated according to Table 3. The amount of cases
for each condition state were divided by the total amount of simula-
tions to get a state probability at any time t. A sample of the

observed proportions j i tð Þ, for a concrete cover depth of 25 mm, is
shown in Table 4. For reason of brevity the complete list for 100
years is not given, but it can be easily obtained by running the code
published on the GitHub site.

Task 6: Estimate Transition Probabilities

Making use of the restricted least-squares transition probability esti-
mator [Eq. (13)], the transition probabilities in the deterioration ma-
trix were calculated. Convex optimization was used to minimize the
error term. The matrices obtained for the three different concrete
cover depths are presented in Table 5.

The program for the restricted least-squares transition probabil-
ity estimator, used for this example, was coded in Python using the
Python CVXPY 1.0-embedded modeling language for convex opti-
mization problems (Diamond and Boyd 2016). The source code of
the restricted least-squares transition probability estimator (rlstpe
1.0.0) is distributed on GitHub under a GNU general public license.

Task 7: Evaluation Results

Fig. 2 shows the evaluated deterioration curves based on the matri-
ces of Table 5. Because the concrete cover depth is an important
factor for chloride-induced corrosion, it is not surprising that the
deterioration curves show different behavior, depending on the
depth dc. In the case of a small concrete cover depth [Fig. 2(a)],
the probability that chloride-induced corrosion and cracks will
occur in an early stage is much higher, as in the case of a larger con-
crete cover depth [Fig. 2(c)].

To evaluate the goodness of fit between the estimated transi-
tion probabilities and the simulated values, the error terms for

Table 5. Deterioration Matrices

dc CS s1 s2 s3 s4 s5

15 s1 0.7761 0.2048 0.0191 0.0000 0.0000
s2 0.0000 0.8278 0.1667 0.0055 0.0000
s3 0.0000 0.0000 0.9688 0.0220 0.0092
s4 0.0000 0.0000 0.0000 0.9578 0.0422
s5 0.0000 0.0000 0.0000 0.0000 1.0000

25 s1 0.9282 0.0578 0.0139 0.0001 0.0000
s2 0.0000 0.9430 0.0570 0.0000 0.0000
s3 0.0000 0.0000 0.9397 0.0494 0.0109
s4 0.0000 0.0000 0.0000 0.9209 0.0791
s5 0.0000 0.0000 0.0000 0.0000 1.0000

35 s1 0.9886 0.0085 0.0011 0.0009 0.0009
s2 0.0000 0.9901 0.0071 0.0020 0.0008
s3 0.0000 0.0000 0.9463 0.0392 0.0145
s4 0.0000 0.0000 0.0000 0.9147 0.0853
s5 0.0000 0.0000 0.0000 0.0000 1.0000

(a) (b)

(c)

Fig. 2. Evaluated deterioration curves: (a) concrete cover depth dc = 15mm; (b) concrete cover depth dc = 25mm; (c) concrete cover depth dc = 35mm
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each condition state at each time step are plotted in Fig. 3. It can
be seen that the distributions of error terms are not stable. This
instability is also true for the total error term, which is plotted in
the last graph of the figure. This instability is most likely
because the proportional data are generated at every time step,
but the proportional data of one time step are not dependent on
the proportional data of previous steps.

Conclusions

In this paper, a methodology was presented to estimate the transi-
tion probabilities for RC elements using proportional data gener-
ated from mechanistic-empirical models. The proposed method-
ology makes use of a restricted least-squares optimization model
to determine the optimal transition probabilities, i.e., those proba-
bilities that yield the minimal total sum of error terms between
the predicted distribution of the condition state in each time inter-
val over the investigated time period using the Markov model and
the mechanistic-empirical models directly.

This methodology offers a way to estimate transition probabil-
ities when there are no, or only insufficient, data available, but the
mechanistic-empirical models exist. One example is the case of
corrosion, in which no or only sparse inspection data are avail-
able, but various mechanistic-empirical models are available. The

methodology was demonstrated by using models to estimate the
transition probabilities for a simple example of an RC bridge
deck exposed to chloride-induced corrosion. It was demonstrated
that the condition evolution predicted using the Markov model
was close to that predicted by the mechanistic-empirical models.
The total error of the estimated transition probabilities was in the
range between 1� 10−10 and 5� 10−16.

A weakness of the methodology is that the distributions of con-
dition states in each time interval over the investigated using the
mechanistic-empirical model is done as if the each time interval is
independent of the ones before it. Future work will be concentrated
on improving this, particularly with the use of the Bayesian estima-
tion approach to overcome the limitation. Other future work should
focus on how such a methodology could be integrated into existing
BMS and in estimating the potential improvements in the determi-
nation of optimal intervention strategies and programs when com-
pared with estimating transition probabilities based on expert opin-
ion, which is often done when no data exist.

Notation

The following symbols are used in this paper:
ai ¼ regression parameter;

Ccl ¼ chloride concentration;
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Fig. 3. Value of error terms
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Cs ¼ initial (surface) chloride concentration;
Dcl ¼ chloride diffusion coefficient;
D0 ¼ empirical diffusion coefficient;
dc ¼ concrete cover depth;

ft,spl ¼ tensile splitting strength;
I ¼ total number of condition states;
i ¼ condition state i;
kc ¼ executions parameter;
ke ¼ environmental parameter;
kt ¼ test method parameter;
n ¼ age factor;
P ¼ cross-section loss;
P0 ¼ cross-section loss when cracks are visible;
T ¼ number of points in time;
t ¼ time;
t0 ¼ reference time;

Vcorr ¼ corrosion rate coefficient;
w ¼ crack width;
wt ¼ wet period in a year;
w0 ¼ initial visual crack width;
X ¼ random variable;
x ¼ realization of a random variable;

xcl ¼ distance from the concrete surface;
a ¼ pitting factor;
b ¼ propagation parameter;

ɛj tð Þ ¼ error term for state j at time t;
N ¼ matrix with I blocks of identical Nj on the diagonal;
Nj ¼ matrix of observed proportions;

j j tð Þ ¼ observed proportion in state j at time t;
P ¼ transition probability matrix;
p ij ¼ transition probability;

t j tð Þ ¼ true proportion for state j at time t; and
f ¼ reinforcement bar diameter.
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