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Abstract: In the management of road networks, it is often desired to know the condition of individual road sections, which is approximated
using the values of condition indicators. The values of these indicators can be used, for example, to determine whether an intervention should
be executed on the road sections in the upcoming year, or to predict the future condition of the road sections. Unfortunately, a common
problem when working with these data is that there are numerous road sections where no information is available. This can happen either due
to errors made during the inspection campaigns themselves or due to using multiple independent sets of geographical information system
(GIS) indexed data, when the sets are recorded as noncoincidental GIS shapes. It is of interest to the road manager to estimate the values of the
missing condition indicators as best as possible. In this paper, an investigation of the ability to estimate values of road section indicators based
on their spatial correlation is presented. The investigation is done by estimating the values of condition indicators for surface defects, and
longitudinal and transversal unevenness exploiting the spatial correlation between them, on the Swiss national highway network. It is shown
that the values of road section indicators can be estimated based on their spatial correlation with reasonably high levels of accuracy. The
variation of the predictive ability per condition indicator is shown. DOI: 10.1061/(ASCE)IS.1943-555X.0000290.© 2016 American Society
of Civil Engineers.

Author keywords: Kriging method; Pavement management; Spatial correlation; Missing data.

Introduction

In the management of road networks, it is often desired to know the
condition of individual road sections, which is approximated using
the values of condition indicators. The values of these indicators
can be used, for example, to determine whether an intervention
should be executed on the road section in the upcoming year, or
to predict the future condition of the road sections. The information
collected during each inspection campaign is often stored in the
form of geographical information system (GIS) indexed data.

Two common problems when working with these data are that
there are some road sections where no information has been col-
lected or stored, or where the roads have been divided into different
sections in successive years. The former can happen due to errors
made during the inspection campaigns themselves, for example, if
the values of a condition indicator for one section are not measured,
or are entered incorrectly into the database. The latter can happen
due to poor planning or coordination. These two cases are illus-
trated in Fig. 1, where the recording of information from two
inspection campaigns in which information was stored at two

different sizes of road sections is shown in the upper portion of
the figure, and the desired recording of information is shown in
the bottom portion of the figure.

In Fig. 1, the first inspection campaign is considered to have
taken place at time t, and the second inspection campaign is con-
sidered to have taken place at time tþ 1. The road link extends
from Point A to Point B. In the inspection campaign at time t,
the collected information is recorded and attributed to each GIS
shape representing a 200-m-long road section. In the inspection
campaign at time tþ 1, the collected information is recorded
and attributed to each GIS shape representing a 100-m-long road
section, which is not the same as in the first campaign. Addition-
ally, no information is recorded for the third 100-m road section
from Point A, which may be due to a malfunction in equipment.
When a road manager would like to determine whether an interven-
tion should be executed on the road section in the upcoming year or
to predict the future condition of the road sections, it is useful to
have harmonized and complete data sets, i.e., the GIS shape of the
road sections should be the same irrespective of inspection cam-
paign, and all road sections should have a value for the condition
indicator. In either case, it is possible to speak of missing data. In
the first case, the data are only missing because of the division of
the road sections, and the second is truly missing data. In Fig. 1,
they are referred to as potential missing data and missing data, re-
spectively. In both cases, it would be beneficial to be able to create
the complete data sets. This figure is only for illustrative purposes;
in many practical cases, in either first or second inspection cam-
paigns, the GIS shapes are often not equally the same (e.g., at time
t and tþ 1, the shapes can differ by more than 200 m or 100 m).

When there are missing, or potentially missing, condition indi-
cator values, there are generally two situations that might exists.
The first is when previous values exists from earlier or later inspec-
tion campaigns, e.g., the value in 2014 is missing, but the values in
2013 and/or 2015 are available. In this situation, many pavement
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behavioral models (e.g., Chu and Durango-Cohen 2007, 2008;
Nakat and Madanat 2008; Reger et al. 2013; Anastasopoulos
and Mannering 2015) can be used to extrapolate past data. The sec-
ond is when values have been recorded nearby, e.g., the value on
Road Section 3 in Fig. 1 (inspection campaign at time tþ 1) is
missing but the values for Road Sections 1, 2, 4, and 5 are available.
In this situation, other techniques can be used to interpolate the data
(Al-Zoubi et al. 2015). For example, a missing value can be inter-
polated using the mean of the values for the two nearest road sec-
tions. In such as case, there may be a bias introduced because the
two sections may not be the same distance away. As roads are lon-
gitudinally connected, the values of the indicators along the road
will be spatially correlated if they are sufficiently close to one an-
other (Kestler et al. 1994). One way to estimate missing data is,
therefore, to postulate that the values of the condition indicators
on the nearby sections and exploit the correlation between the val-
ues. One method to do this is a Kriging model, which can be used to
estimate the missing value at a target point from optimally derived
weights applied to observations at nearby points (Wackernagel
1998). The predicted target value is then calculated as a linear com-
bination of the observed values. Importantly, the weights depend
both on the spatial correlation and on the spatial distribution of
the points.

In this paper, an investigation of the ability to estimate values
of road section indicators based on their spatial correlation is pre-
sented. The investigation is done by estimating the values of con-
dition indicators for surface defects, as well as longitudinal and
transversal unevenness by exploiting the spatial correlation be-
tween them, on the Swiss national highway network. A univariate
Kriging model is used. It is shown that the values of road section
indicators can be estimated based on their spatial correlation with
reasonably high levels of accuracy. The variation of the predictive
ability per condition indicator is shown.

The rest of the paper is structured as follows. Section “Back-
ground” provides a description of the problems and accompanying
research that has been done with respect to missing data in pave-
ment management and the use of spatial correlation to estimate the
missing values. Section “Methodology” provides the proposed

methodology used in the investigation. Section “Example” provides
a description of the investigation. The last section includes the con-
clusions and a discussion of possible future research directions.

Background

Problem and Relevant Research

Missing data are a common problem in many disciplines of science.
Missing data can have a significant effect on the inferences made
in, and the conclusions of, a study. In the pavement management
context, missing data can occur due to numerous reasons, such as
malfunctions in inspection equipment, interpretation mistakes by
the inspector, inadequate amounts of time or resources to collect
data everywhere desired, and aggregating data to objects differently
in different inspection campaigns.

The focus of research in the past,when dealing with the problem
of missing data in the field of pavement management, has been
predominately focused on the estimation of parameters to be used
in predictive models. For example, Ben-Akiva et al. (1993) and
Ben-Akiva and Ramaswamy (1995) proposed an statistic approach
to predict latent deterioration of infrastructure objects in situations
when panel data sets were either complete or incomplete. Later,
Chu and Durango-Cohen (2008) proposed the use of an AutoRe-
gressive Integrated Moving Average model and a Kalman filter to
deal with panel data sets containing missing data. Others, such as
Hong and Prozzi (2006), Kobayashi et al. (2012), and Lethanh et al.
(2015) have used a Bayesian approach for estimating the parame-
ters of predictive models when there are incomplete or hetero-
geneous data sets.

Research work on reestimating the missing data is rare. Some of
the first research in this area has been done by Farhan and Fwa
(2013, 2015) who used a stochastic multiple imputation model,
which is basically a linear regression model with a stochastic error
term, to estimate missing data using other temporally correlated
data. Other work has been done by Al-Zoubi et al. (2015), who
proposed a so-called systematic statistical analysis to estimate

Fig. 1. Graphical illustration of problems exist across inspection campaigns for a same road link
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the missing data using a set of techniques such as using average or
mean values of nearby data, or linear regression model similar to
the work of Farhan and Fwa (2013, 2015). Some of the techniques
proposed are to be used for temporally correlated data, and others
for spatially correlated data, and some for both.

As summarized by Al-Zoubi et al. (2015) the techniques used
to estimate the values of missing pavement condition indicators
can be grouped in two categories: (1) model-free replacement tech-
niques, and (2) model-based replacement techniques. The model-
free replacement techniques do not require any mathematical model
to estimate the missing data. Instead they rely on simple extrapo-
lation and interpolation techniques. For example, if the values of a
condition indicator of a road section is missing, the values may be
estimated as the mean value of nearby road sections, by extrapo-
lating the previous condition indicators values using a moving aver-
age (Al-Zoubi et al. 2015). Such estimation techniques, however,
can have biases and therefore may not be the best way to predict the
missing values.

The model-based replacement techniques require a mathemati-
cal model to estimate the missing data. Their use requires the def-
inition of a time-dependent or parameter-dependent function of the
values of the condition indicators. An example of such function is
the sigmoidal function used by the Texas Department of Transpor-
tation (Stampley et al. 1995) and the exponential function used to
capture the evolution of international roughness index over time
(Paterson 1986). Values of parameters in the predefined functions
are often estimated from available data by means of various regres-
sion techniques (e.g., linear regression, cubic regression, or cubic
spline based on serviceability indicators) (Al-Zoubi et al. 2015).

Although the research made to date is beneficial with respect to
estimating missing data, some improvements are possible with re-
spect to the exploitation of the spatial correlation of the values of
condition indicators on road sections. An interesting investigation
into the spatial correlation of the values of condition indicators on
road sections is that by Kestler et al. (1994), who used geostatistical
analysis to estimate the spatial dependency of the values of the
Falling Weight Deflectometer tests at various distances on a road.

Keeping this in mind, the methodology investigated in this
paper for use to estimate values of road section condition indicators
is one that exploits the spatial correlation of the values of the con-
dition indicators on road sections; a univariate Kriging model has
been chosen to estimate the values of characteristic variables at one
location. The rest of this section includes a brief overview of the
Kriging model, a brief discussion of the longitudinal nature of road
data, and a brief refresher of spatial correlation.

Kriging Models

Kriging models are normally used to estimate the values of char-
acteristics variables at one location, the estimation point, given sim-
ilar values at surrounding locations. For example, a Kriging model
can be used in environmental engineering to model how the degree
of contamination of an unwanted substance varies over a given area
of land (Cattle et al. 2002). In principle, a Kriging model is an in-
terpolation based on a weighted average of surrounding data points.
The weights are a function of their spatial covariance values,
which themselves are assumed to be a function of distance. There
are many good sources describing the actual calculation of Kriging
weights; e.g., Wackernagel (1998), Diggle and Ribeiro (2001), and
Stein (1999) to which the interested reader is referred so that the
discussion here may be kept to a minimum. However, two basic
effects are important to note. First, the closer a data point is to
an estimation point, the larger its weight in the estimation becomes.
Second, the closer two data points come to one another, the smaller

the sum of their weights becomes, provided a third data point exists
to which the extra weight can be transferred. This is consistent with
the intuition that sampling twice at the same location does not add
as much new information as sampling twice at different locations.
The selection of the data points for interpolation of a given estima-
tion point, referred to as clustering, plays an important role. The
selection of the cluster size is a particular challenge. On one hand,
the wider a cluster is, the more it includes points that have a small
amount of predictive information. On the other hand, the narrower
the cluster, the fewer observations are available on which to base a
prediction. Some strengths of Kriging models are that they com-
pensate for the effects of clustered data by assigning individual
points within a close proximity less weight than isolated data points
and thereby treat clusters more like single points, give estimates of
estimation errors (Kriging variance) in addition to the estimates of
the variables themselves, and provide a basis for stochastic simu-
lation of potential realizations through the availability of estimation
errors.

There are three main types of Kriging models: simple, ordinary,
and Kriging with a trend. They primarily differ in their treatments
of the trend component, mðuÞ (e.g., assumption on a constant
mean and nonbiasness over a random field). Within these types
of Kriging models, they can be either univariate or multivariate,
i.e., univariate Kriging models are used to estimate the value of
an indicator at one geographical point using values of that indica-
tors measured at neighboring points. In contrast, multivariate
Kriging models are used to estimate the value of an indicator at
one point by using not only values of that indicator measured at
neighboring points but also values of other indicators measured at
that points and neighboring points. More information can be found
in Goovaerts (1997) and Wackernagel (1998). In principle, all types
of Kriging models can be used to address the issue of missing data
and determine the spatial correlation among data points.

Spatial Correlation in Kriging Models

Spatial correlation is expressed in Kriging models through a theo-
retical variogram. It expresses the functional relationship between
distance and the variance of the difference between two random
variables. Using the definitions of variance, covariance, and corre-
lation one can express the relationship between the two random
variables as follows:

Varða − bÞ ¼ σ2
a þ σ2

b − 2σaσbρa;b ð1Þ

where σ and ρ = standard deviation and correlation coefficients,
respectively. If one assumes that each random variable has the same
variance, then Eq. (1) reduces to Eq. (2):

Varða − bÞ ¼ 2σ2
að1 − ρa;bÞ ð2Þ

This hypothesis is maintained here across all observations of the
same indicator type and inspection campaign. A second maintained
hypothesis is that the correlation between observations of any type
is a stationary function of the distance h between the observations.
Thus the theoretical variogram can be defined as

μðhÞ ¼ VarðhÞ ¼ 2σ2½1 − ρðhÞ� ð3Þ

and the higher the spatial correlation, the lower the variance of the
difference. In contrast to correlation, variance is not a unitless num-
ber. Its absolute size is therefore, more difficult to interpret.

© ASCE 04016006-3 J. Infrastruct. Syst.
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Methodology

Steps

The methodology used in the investigation contains the following
iterative steps.

Step 1
Define a set of clusters, i.e., the extent of the road section to be used
to estimate the value of the target section, including the length of
the target section. For example, in Fig. 2 where sn is the target road
section in the lane in which vehicles are traveling in Direction A,
Cluster Size 1 is 300 m long, and Cluster Size 2 is 500 m long. This
set needs to be selected from the smallest reasonable size, e.g., a
300-m-long road section, which encompasses two 100-m-long road
sections on either side of the target road section, and reasonable
steps, e.g., 200 m, to one where it is so large that it is not reasonable
to believe that there would be any significant correlation between
the values (e.g., 2,100 m).

Step 2
Define how the data will be selected from the cluster (e.g., the data
selected from the cluster is all of the values of condition indicators
attributed to the road section represented by the cluster, or only the
values within specific ranges from the center of the road section
represented by the cluster).

Step 3
Determine the correlation function. This is done first by plotting the
experimental variograms for the condition indicators, whose values
are to be estimated, i.e., the relationship between the distance from
the center of the target section to each data point within the cluster
(the lag differences) and the associated semivariance, selecting an
appropriate form of the correlation function and then determining
the values of the parameters of the correlation function to give the
best fit with the experimental variogram, i.e., the theoretical vario-
grams. The semivariance is calculated using the empirical semivar-
iance function in Eq. (4):

γ̂ðhÞ ¼ 1

2
·

1

NðhÞ
XNðhÞ

i¼1

½Zðuα þ hÞ − ZðuαÞ�2 ð4Þ

where NðhÞ = number of data pairs at distance h (later herein re-
ferred as distance separation length).

Next, those estimates are fitted to a functional form to estimate
the variogram. Some general functional forms for the correlation
function that are often used are Cauchy, circular, cubic, gaussian,
exponential, matern, and spherical (Wackernagel 1998; Diggle and
Ribeiro 2001). These are referred to as the empirical and the theo-
retical variagrams, respectively. Theoretical variograms often con-
tain a discontinuous jump at the origin and an upper bound where

correlation between the observations has been reduced to zero,
which are referred to as a sill (σ2) and range parameter (ϕ). The
correlation function, in which the covariance is prevented, can
be written as

μðhÞ ¼ 2σ2

�
1 − exp

�
− h
ϕ

��
ð5Þ

Step 4
Derive the covariance function for each condition indicator from
each inspection campaign for all road links in the network. Assum-
ing variance is constant throughout the field, the covariance func-
tion has the following form:

CðhÞ ¼ σ2ρðhÞ ð6Þ

ρðhÞ ¼ exp

�
− h
ϕ

�
ð7Þ

Step 5
Determine the covariance matrix for condition indicator from each
inspection campaign for all road links in the network. The covari-
ance matrix expresses the covariance between each point in a
cluster and every other point in the cluster. In this matrix cell
i, j contains the value of this expression at the distance between
points i and j. The elements on the diagonal are all equal to the
variance of the detrended field. For the interest of reader, a rich
literature describing various algorithms is given in the work of
Wackernagel (1998).

Step 6
Determine the residuals between the values of each available con-
dition indicator from each inspection campaign for all road links in
the network estimated using the univariate Kriging model (de-
scribed in the following subsection) and the values of the param-
eters corresponding to each condition indicator from each
inspection campaign for all road links in the network and the actual
values for each cluster size.

Step 7
Select the optimal cluster size, i.e., the cluster size that results in the
lowest mean or standard deviation of residuals. If there is signifi-
cant variation in the means of the residuals and little variation in the
standard deviations of the residuals, then the cluster size that results
in the lowest mean values is deemed the optimal cluster. If there is
little variation in the means of the residuals but significant devia-
tions in the standard deviations of the residuals, then the cluster size
that results in the lowest standard deviations is deemed the optimal
cluster. If it is not obvious which should be used, then weights need
to be signed to both the mean and the standard deviation.

Fig. 2. Cluster sizes
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Step 8
Evaluate the ability of using spatial correlation to estimate the
values of missing condition indicators.

Univariate Kriging Model

The univariate Kriging model used in this investigation, which is
described in Goovaerts (1997) is of the simple types of Kriging
models. In this model, the residual between the observed value
and expected value is represented by RðuÞ ¼ ZðuÞ −mðuÞ, where
ZðuÞ is treated as a random field with its expected value,mðuÞ. The
residual between the expected value of the condition indicator at
location u, Z�ðuÞ, is given by

Z�ðuÞ −mðuÞ ¼
XnðuÞ
α¼1

λα½ZðuαÞ −mðuαÞ� ð8Þ

where u, uα = location vectors for the target point and one of the
data points in a cluster, indexed by α; nðuÞ = number of data points
in the cluster that are used to estimate Z�ðuÞ; mðuÞ and mðuaÞ =
expected values of ZðuÞ and ZðuαÞ; λαðuÞ = Kriging weights as-
signed to data points zðuαÞ in the estimation of the target point u.
The same data point will receive a different weight if it is used to
estimate a different target point.

The objective of Kriging is to determine the weights, λα, that
minimize the variance of the expected value of the condition
indicator, Z�ðuÞ

σ2
EðuÞ ¼ Var½Z�ðuÞ − ZðuÞ� ð9Þ

EfZ�ðuÞ − ZðuÞg ¼ 0 ð10Þ

After filtering out the trend, the residual random field RðuÞ has a
stationary mean of 0 and a stationary covariance function; that is,
covariance is a function of the distance separation length h but not
of position u.

Investigation

Background

In the investigation, the values of three condition indicators for sur-
face defects, as well as longitudinal and transversal unevenness on
the Swiss national highway network (Table 1) were estimated. De-
scriptions of I values in the table are defined in technical norm VSS
640925b (VSS 2003) in Switzerland. Starting with a complete data
set, values were systematically removed and then reestimated using
the methodology given in section “Methodology.” The values of the
condition indicators used were taken from three successive inspec-
tion campaigns conducted at five-year intervals. The values were
determined using high-speed inspection vehicles with one value re-
corded to represent the average value for varying length of road

Table 1. Data Overview

I-value Description

Number of data points

2000 2004 2009

I0 Surface damage without
consideration of rut index

0 28,983 35,022

I2 Longitudinal unevenness 27,747 29,046 35,330
I3 Transversal unevenness 27,765 29,131 35,339

Table 2. Structure of the Database

Road identifier Section identifier

Coordinates Inspection 1 Inspection 2

X Y Year Inspection 1 Inspection 2 : : : Year Inspection 1 Inspection 2 : : :

1 1 x1 y1 2008 v11 v21 : : : 2012 : : : : : : : : :

1 2 x2 y2 2008 v12 v22 : : : 2012 : : : : : : : : :

1 3 x3 y3 2008 v13 v23 : : : 2012 : : : : : : : : :
2 1 : : : : : : 2008 : : : : : : : : : 2012 : : : : : : : : :
2 2 : : : : : : 2008 : : : : : : : : : 2012 : : : : : : : : :
2 3 : : : : : : 2008 : : : : : : : : : 2012 : : : : : : : : :
2 4 : : : : : : 2008 : : : : : : : : : 2012 : : : : : : : : :
: : : : : : : : : : : : 2008 : : : : : : : : : 2012 : : : : : : : : :
: : : : : : : : : : : : 2008 : : : : : : : : : 2012 : : : : : : : : :
R : : : : : : : : : 2008 : : : : : : : : : 2012 : : : : : : : : :

Fig. 3. Spatial correlation of serviceability indicators

Fig. 4. Empirical variograms of condition indicators
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section with different GIS shapes. These indicators are continuous
within the range [0,5] where the best state is zero. Detailed stan-
dards exist on their measurement and yet achieving comparable
measurements across inspection campaigns is not trivial. This
is particularly true for the Indicator I0, which involves a visual

assessment of the severity and extent of the damage to the road
surface. The data were restructured as shown in Table 2 taking into
consideration of reshaping the GIS shapes across inspection
campaigns. The values are recorded by road direction, section,
and lane (Fig. 2). Data elements for a section include the position

Fig. 5. Variograms for exponential model: (a) σ2 ¼ 0.02, ϕ ¼ 650; (b) σ2 ¼ 0.07, ϕ ¼ 650; (c) σ2 ¼ 0.07, ϕ ¼ 450; (d) σ2 ¼ 0.06, ϕ ¼ 250;
(e) σ2 ¼ 0.26, ϕ ¼ 250; (f) σ2 ¼ 0.09, ϕ ¼ 650; (g) σ2 ¼ 0.14, ϕ ¼ 650; (h) σ2 ¼ 0.16, ϕ ¼ 550
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(e.g., coordinates and axis distance), the date, and indicator values
of different inspections. All road links were defined with distinct
identification (e.g., link name). Each road section within a link was
given a unique identification (e.g., road ID).

The spatial correlation of the values of the condition indicators
is shown in Fig. 3, where the separation distance is the distance
measured from the edge of the target road section to the edge of
other road sections. The inspection campaign in the year 2000 did
not include an observation for Indicator I0. The 2004 and 2009
campaigns measured the road sections using all three indicators.
The lowest correlation values for both Indicators I2 and I3 occur
in the year 2000. Barring these two observations, which probably
reflect a less accurate inspection method, there is a rank order
in spatial correlation where I0 > I3 > I2. That is, longitudinal
unevenness, Indicator I2, appears to have the most spatial random-
ness, and surface defects, Indicator I0, the most spatial correlation.
The values calculated at zero meters difference are deceptive since
in fact, there is only one measurement at each point and the corre-
lation with itself must be 1. If two independent inspections were
executed at the same place, it is unlikely that the correlation would
be 1. The evidence of spatial correlation declining in distance is

nonetheless strong. In addition, the rate of decline levels off in
all three cases after about 400 m and it remains clearly above zero
even at a 1,000-m difference. Considering that the length of a typ-
ical intervention on a national highway is likely to be longer than
1,000 m, this result is to be expected due to shared histories of con-
struction, maintenance, and use. An alternative, but not mutually
exclusive cause, might be forward propagation of damage through
the induced motion on passing vehicles.

Step 1: Define a Set of Cluster Sizes

The 10 selected cluster sizes had distance separation lengths of 100
to 1,000 m at 100-m intervals. A cluster with a length of 300 m and
a 100-m-long target section has a distance separation length
of 100 m.

Step 2: Define How the Data Will Be Selected from the
Cluster

Two rules were used to select data from the clusters. In Scenario 1,
all values of the condition indicators within a cluster were used. In
Scenario 2, only the values that were farthest from the target section

Table 3. Covariance Matrix (s2 ¼ 0.02 and f ¼ 650)

h (m) 0 100 200 300 400 500 600 700 800 900 1,000

0 0.02000 0.01715 0.01470 0.01261 0.01081 0.00927 0.00795 0.00681 0.00584 0.00501 0.00429
100 0.01715 0.02000 0.01715 0.01470 0.01261 0.01081 0.00927 0.00795 0.00681 0.00584 0.00501
200 0.01470 0.01715 0.02000 0.01715 0.01470 0.01261 0.01081 0.00927 0.00795 0.00681 0.00584
300 0.01261 0.01470 0.01715 0.02000 0.01715 0.01470 0.01261 0.01081 0.00927 0.00795 0.00681
400 0.01081 0.01261 0.01470 0.01715 0.02000 0.01715 0.01470 0.01261 0.01081 0.00927 0.00795
500 0.00927 0.01081 0.01261 0.01470 0.01715 0.02000 0.01715 0.01470 0.01261 0.01081 0.00927
600 0.00795 0.00927 0.01081 0.01261 0.01470 0.01715 0.02000 0.01715 0.01470 0.01261 0.01081
700 0.00681 0.00795 0.00927 0.01081 0.01261 0.01470 0.01715 0.02000 0.01715 0.01470 0.01261
800 0.00584 0.00681 0.00795 0.00927 0.01081 0.01261 0.01470 0.01715 0.02000 0.01715 0.01470
900 0.00501 0.00584 0.00681 0.00795 0.00927 0.01081 0.01261 0.01470 0.01715 0.02000 0.01715
1,000 0.00429 0.00501 0.00584 0.00681 0.00795 0.00927 0.01081 0.01261 0.01470 0.01715 0.02000

Table 4. Scenario 1: Summary of the Standard Deviations and Means of the Residuals

h(m)

SD σ and means μ of residuals

I0 I2 I3

2004 2009 2000 2004 2009 2000 2004 2009

100 0.07795 0.14068 0.29075 0.21718 0.54079 0.21453 0.22456 0.30764
−8.94 × 10−4 1.64 × 10−3 −3.97 × 10−4 −4.65 × 10−4 −5.47 × 10−3 −1.11 × 10−3 −1.47 × 10−4 4.52 × 10−3

200 0.07726 0.13887 0.28355 0.21276 0.52899 0.21336 0.22777 0.31044
−8.94 × 10−4 1.59 × 10−3 −1.41 × 10−3 −4.70 × 10−4 −5.60 × 10−3 −9.71 × 10−4 −1.27 × 10−4 6.06 × 10−3

300 0.07711 0.13847 0.2789 0.21147 0.51555 0.21248 0.22743 0.30682
−9.06 × 10−4 1.53 × 10−3 −1.47 × 10−3 −4.73 × 10−4 −5.26 × 10−3 −9.71 × 10−4 −1.37 × 10−4 6.64 × 10−3

400 0.07706 0.13838 0.27686 0.21138 0.5159 0.21195 0.22698 0.30431
−9.31 × 10−4 1.52 × 10−3 −1.48 × 10−3 −4.75 × 10−4 −4.86 × 10−3 −9.71 × 10−4 −1.17 × 10−4 6.53 × 10−3

500 0.07705 0.13837 0.27628 0.21047 0.5168 0.21156 0.22675 0.30557
−9.39 × 10−4 1.53 × 10−3 −1.48 × 10−3 −4.77 × 10−4 −4.89 × 10−3 −9.72 × 10−4 −9.72 × 10−5 6.30 × 10−3

600 0.07709 0.1384 0.27542 0.20982 0.51407 0.21146 0.22651 0.30469
−9.40 × 10−4 1.55 × 10−3 −1.50 × 10−3 −1.37 × 10−3 −4.86 × 10−3 −9.72 × 10−4 −8.72 × 10−5 6.11 × 10−3

700 0.07713 0.13842 0.27543 0.21031 0.51183 0.2117 0.22667 0.30612
−9.61 × 10−4 1.50 × 10−3 −1.50 × 10−3 −1.36 × 10−3 −4.74 × 10−3 −9.71 × 10−4 −1.17 × 10−4 6.47 × 10−3

800 0.07711 0.13819 0.27552 0.20997 0.51427 0.21167 0.22668 0.30704
−9.67 × 10−4 1.45 × 10−3 −1.50 × 10−3 −1.36 × 10−3 −4.78 × 10−3 −9.71 × 10−4 −1.27 × 10−4 6.48 × 10−3

900 0.07715 0.13824 0.27544 0.2096 0.51282 0.21151 0.22645 0.30671
−9.78 × 10−4 1.42 × 10−3 −1.50 × 10−3 −1.35 × 10−3 −4.90 × 10−3 −9.71 × 10−4 −1.07 × 10−4 6.53 × 10−3

1,000 0.07716 0.13817 0.27537 0.20997 0.51103 0.21146 0.22656 0.30739
−9.87 × 10−4 1.40 × 10−3 −1.48 × 10−3 −1.35 × 10−3 −4.95 × 10−3 −9.71 × 10−4 −1.37 × 10−4 6.55 × 10−3

Note: Values of standard deviations and means of residuals are shown in upper and lower part of each row, respectively. Values in bold are when they are
converted to absolute values.
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were used. For example, with a cluster size of 500 m (a distance
separation length of 200 m), in Scenario 1, the values of the con-
dition indicators of the four road sections adjacent to the target road
section are used, and in Scenario 2, only the values of the two road
sections farthest from the target section were used.

Step 3: Determine the Correlation Function

The empirical variograms (Fig. 4) were drawn using all data for all
condition indicators from all inspection campaigns using Eq. (4).
These correspond to the correlation estimates in Fig. 3. It can be
seen that the semivariance increases, and, therefore, the correlation

Table 5. Scenario 2: Summary of the Standard Deviations and Means of the Residuals

h (m)

Standard deviations σ and means μ of residuals

I0 I2 I3

2004 2009 2000 2004 2009 2000 2004 2009

100 0.07795 0.14068 0.29075 0.21718 0.54079 0.21453 0.22456 0.30764
−8.94 × 10−4 1.64 × 10−3 −3.97 × 10−4 −4.65 × 10−4 −5.47 × 10−3 −1.11 × 10−3 −1.47 × 10−4 4.52 × 10−3

200 0.09842 0.19934 0.33684 0.26729 0.58848 0.26542 0.29054 0.41459
−1.13 × 10−3 1.65 × 10−3 −1.69 × 10−3 3.05 × 10−5 −2.58 × 10−3 −1.05 × 10−3 1.40 × 10−4 1.02 × 10−2

300 0.10739 0.22484 0.34586 0.29056 0.57950 0.28863 0.32660 0.44583
−1.24 × 10−3 1.58 × 10−3 −1.04 × 10−3 5.78 × 10−5 −5.01 × 10−4 −1.31 × 10−3 2.58 × 10−4 9.72 × 10−3

400 0.11649 0.23846 0.34815 0.29966 0.64494 0.30091 0.34765 0.48296
−1.25 × 10−3 1.64 × 10−3 −1.40 × 10−3 −9.08 × 10−5 6.52 × 10−4 −1.63 × 10−3 −5.66 × 10−5 7.71 × 10−3

500 0.12422 0.25308 0.35496 0.29840 0.66850 0.31587 0.37111 0.51858
−1.10 × 10−3 1.39 × 10−3 −1.44 × 10−3 −2.02 × 10−6 −8.76 × 10−4 −1.68 × 10−3 2.09 × 10−4 4.89 × 10−3

600 0.13485 0.26470 0.35504 0.30538 0.66808 0.33309 0.39533 0.52315
−9.56 × 10−4 1.22 × 10−3 −1.68 × 10−3 −4.66 × 10−6 −1.79 × 10−3 −1.74 × 10−3 6.93 × 10−4 3.63 × 10−3

700 0.14333 0.27523 0.36930 0.31993 0.67440 0.35515 0.42239 0.54351
−6.35 × 10−4 1.31 × 10−3 −1.73 × 10−3 −1.53 × 10−4 −2.73 × 10−3 −1.65 × 10−3 7.47 × 10−4 3.57 × 10−3

800 0.15000 0.28557 0.38290 0.32074 0.68903 0.36391 0.43648 0.56676
−5.26 × 10−4 1.40 × 10−3 −1.48 × 10−3 −3.78 × 10−4 −3.44 × 10−3 −1.39 × 10−3 5.88 × 10−4 3.99 × 10−3

900 0.16131 0.29585 0.38907 0.32448 0.67490 0.36272 0.43648 0.58576
−3.76 × 10−4 1.34 × 10−3 −1.38 × 10−3 −5.77 × 10−4 −4.04 × 10−3 −1.52 × 10−3 5.88 × 10−4 4.39 × 10−3

1,000 0.16908 0.30255 0.39459 0.33652 0.64653 0.36843 0.45262 0.60407
−4.62 × 10−5 1.57 × 10−3 −1.16 × 10−3 −7.46 × 10−4 −4.60 × 10−3 −1.36 × 10−3 − 1.76 × 10−5 4.66 × 10−3

Note: Values of standard deviations and means of residuals are shown in upper and lower part of each row, respectively. Values in bold are when they are
converted to absolute values.

Fig. 6. Residuals-I0
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decreases, that larger the distance separation distance, until the ob-
servations are truly independent, which occurs once the experimen-
tal variograms are no longer increasing. The rank order in Fig. 4 is
different than that in Fig. 3. This is because in Fig. 4, the correlation
effect is scaled by the magnitude of the underlying variance of the
random variables, whereas in Fig. 3 it is not.

Once the empirical variograms were determined, an exponential
form for the correlation function was selected [Eq. (7)] based on a
visual examination of the empirical variograms in Fig. 4 and the
theoretical variograms were determined. The values of the param-
eters in each of the correlation functions for Condition Indicators
I0, I2, and I3 for each inspection campaign are given, and the
theoretical variograms are shown in Fig. 5.

Step 4: Derive the Covariance Function

The covariance function was then calculated for each road link in
the network using Eq. (6). The values of the parameters are given in
the figure for each condition indicator from each inspection
campaign for all road links in the network.

Step 5: Determine the Covariance Matrix

The covariance matrix was determined for each condition indicator
from each inspection campaign for all road links in the network us-
ing the correlation functions derived in Step 4. For example, for I2-
2000, with its sill of σ2 ¼ 0.02 and range parameter of ϕ ¼ 650, the
covariance matrix in Table 3 can be computed using Eq. (7).

Step 6: Determine the Residuals

Using the univariate Kriging model (subsection “Univariate
Kriging model”) together with the values of the parameters associ-
ated with each road link, the residuals were estimated for each con-
dition indicator, for each road section on each road link using each of
the clusters from the set of clusters defined in Step 1. In this example,
the estimation was done using a standard optimization algorithm
developed in GeoR package (Diggle and Ribeiro 2001, 2007). A
summary of the means and standard deviations of the residuals for
Scenarios 1 and 2 are given in Tables 4 and 5 and shown in
Figs. 6–8.Ascanbe seen, thevariations in themeanvalues of residuals

Fig. 7. Residuals-I2
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in all cases are relatively small (<0.002), except for I2-2009 and I3-
2009, but the values of standard deviations vary differently (e.g., value
of standard deviation of residual of I2-2000 with distance separation
length greater than 100 m varies about 10% compared to that with
distance separation length of 100 m). For the purposes of discussion
in a later section, values of standard deviations andmeans of residuals
are shown in Tables 4 and 5 with their minimum values highlighted
in bold.

Step 7: Select Optimal Cluster Size

The optimal cluster sizes if the lowest means of the residuals are
used, and if the lowest standard deviations are used, are given in
Tables 4 and 5 for Scenarios 1 and 2, respectively. They are not
constant for all indicators, or for all inspection campaigns. For ex-
ample, for Scenario 1, if the values of standard deviation of the
residuals are used the optimal cluster sizes are 1,100 and 1,300
m for the inspection campaigns I0-2009 and I2-2000, respectively.

Step 8: Evaluate the Ability of Using Spatial
Correlation to Estimate the Values of Missing
Condition Indicators

Scenario 1: When All Data Points in the Clusters Were
Used
When all data points in the clusters were used, it was found that the
means of the residuals were close to zero and relatively constant. In
this case, the standard deviation should be used to estimate the
optimal cluster size.

The relationship between the standard deviations of the resid-
uals and the cluster sizes (Figs. 6–8) can be grouped into two
categories. The first category is one where there is little change
in the standard deviations of the residuals as the cluster size
changes, which is the case for I0 and I3 for all inspection cam-
paigns. The second category is one where there is an initial decrease
in the standard deviations of the residuals as the cluster size
changes followed by a stabilization, which is the case for I2 for

Fig. 8. Residuals-I3
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all inspection campaigns (Table 4). In both categories, there is a
decline in the value of standard deviation for indicators and inspec-
tion campaigns, with the exception for I3-2004, which are very
slight (e.g., the value of standard deviation at a distance separation
length of 100 m is 0.22456, which is smaller than the standard
deviations corresponding to other distance separation lengths).
The decrease of the standard deviations for I0-2004, I0-2009,
I3-2000, and I3-2009 are within a range of 2%. This is, however,
different for I2 for all inspection campaigns, which declines by 3 to
6% in all 3 years. The smallest standard deviations occur when the
cluster sizes are between 900 and 1,300 m, which corresponds to
distance separation lengths of 400 to 600 m, respectively.

By comparing the standard deviations of the residuals to the
magnitude of the range of observed indicator values, it can be seen
that 98% of all estimated values lie in the range 0 to 3, even though
values of up to 5 were observed. Taking [0,3] as the effective range
of values, a standard deviation of 0.3 is then exactly 10% of that
range. In this case, only the standard deviations of I2-2009 are
substantially above 0.3, having values near 0.5. Whether or not
this is considered a good estimation depends, of course, on the ap-
plication, but it is suspected to be better than simple interpolation
and is certainly better than letting such missing values remain
missing.

It can also be seen that significant differences exist in the stan-
dard deviations of the residuals for the same indicators for different
inspection campaigns, e.g., Fig. 7 for Scenario 1. Given the sample
size of nearly 30,000 measurements, it is unlikely this difference is
due to sampling error. As the physical processes that cause the
deterioration of the condition of the roads—and therefore the spa-
tial correlation—are likely to have been relatively constant over the
period of time in which the inspection campaigns were conducted,
it is suspected that this variation is due to the changes in the inspec-
tion process itself. The exploration of the exact reason was beyond
the scope of the work presented in this paper.

Scenario 2: When Only Edge Sectional Data Points Were
Used
When only data from the edge sections of the cluster were used, the
standard deviations of the residuals increase as the cluster size in-
creases. This can be seen by the triangle marked lines in Figs. 6–8
(Scenario 2). This is not surprising because all intermediate
values are dropped. The increasing standard deviation reflects
the loss of correlation between measurements as the distance be-
tween them increases. The standard deviation of the residual in-
creases by between 50 and 100% in all cases when the cluster
size is increased from 300 and 2,100 m, which corresponds to
the distance separation lengths from 100 to 1,000 m. It can also
been seen that there is a degree of nonlinearity. The means of
the residuals are largely unaffected by the distance between in-
cluded observations, which confirms that the assumption that the
means of the values of the indicators were unbiased in the use of
the Kriging model was correct. In this case, the optimal cluster size
is always 300 m.

Conclusion

In this paper, an investigation of the ability to estimate values of
road section indicators based on their spatial correlation is
presented. The investigation was done by estimating the values
of condition indicators for surface defects, as well as longitudinal
and transversal unevenness by exploiting the spatial correlation be-
tween them, on the Swiss national highway network. An univariate
Kriging model was used. It is shown that the values of road section
indicators can be estimated based on their spatial correlation with

reasonably high levels of accuracy. The variation of the predictive
ability per condition indicator is shown.

The results indicate that the use of univariate Kriging models is a
viable way to estimate missing condition indicator values, which
can be seen by the fact that the mean values of the residuals for
all cluster sizes for all inspection campaigns for Scenario 1 were
less than 0.0067 and those for Scenario 2 were less than 0.011.
The standard deviations of the residuals, however, depending on
the indicator and inspection campaign, can be relatively high.

As this investigation was limited to one kind of Kriging model,
numerous extensions of the research are possible. Of particular in-
terest is the investigation of the use of multivariate Kriging models
that estimate values of one pavement condition indicator at a spe-
cific location using its own values in other locations and those of
other pavement condition indicators. Additionally, future research
should include investigations in the following areas:
• Determine the optimal distance between inspections.
• Evaluate the abilities of different inspection technologies.
• Identify potential measurement or data entry errors through a

comparison with estimated values.
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